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ABSTARCT 

The delay differential equation describes the different timing with different conditions in the solution. The 

convergence of the iterative method is studied here under various fuzzy numbers, in order to speak about 

its closeness and remove vagueness in the solutions. To solve the Fuzzy Delay Differential 

Equations(FDDE), the Runge-Kutta-Fehlberg method (RKF) is used. The numerical results are examined 

to demonstrate the effectiveness of the trapezoidal fuzzy number. 
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I. INTRODUCTION  

A greater amount of applied design study has been done on the concept of timing under various 

contexts. Therefore, it is crucial to develop digital frameworks and models that can be applied to 

resolve often occurring doubtful situations. Chang and Zadeh were the ones who came up with the 

concept of a fuzzy derivative [7, 24]. The fuzzy derivative concept was then presented by Dubois and 

Prade [8] in respect to the augmentation rule. Kandel and Byat [13] introduced the term "fuzzy 

differential equation." In order to address the fuzzy differential conditions with respect to the Seikkala 

derivative [21], Abbasbandi and Allahviranloo [2] used mathematics. By using the variational iteration 

method, Jafari et al. [10] are unable to meet the nth condition of the fuzzy differential conditions. The 

mathematical configuration of the differential equation with fuzzy was tracked by Allahviranloo et al. 

[1, 3] using the appropriate indicator approach. In his book on general differential conditions and 

differential delay conditions, Driver [9] provides comprehensive explanations of the conditions. Bellen 

et al[5, 6] mathematical solutions to DDE were offered. The concepts of differential requirements for 

fuzzy change under summed differentiability have been addressed by Khastan et al. in [14]. Barzinji et 

al [4] analysis the security of a coherent state concentrated on the linear differential differential frames. 
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In [15,20], Renuka et.al., discussed about the concept of complementary connected domination in 

graphs in which the authors exhibted the results  based upon  cubic graphs. 

For the fourth survey, Abbasbandi and Allahwiranloo [2] presented a numerical method 

employing the Runge-Kutta methodology to modify fuzzy differential conditions. The Runge-Kutta 

approach was utilised by Pederson and Sambandham [19] to assign numerical values to fuzzy 

differential delay situations. Using the fourth-order Runge-Kutta strategy, Al-Rawi et al. [23] developed 

a numerical method for resolving the differential carry requirements. Runge-Kutta-Nystrom and the fifth 

Runge-Kutta technique were dropped by K. Kanagarajan et al. [12, 11] for handling fuzzy-delay 

differential equations. The 2nd-Runge-Kutta technique was utilised by V. Parimala et al. [18] to solve 

fuzzy differential situations with fuzzy initial circumstances. Using Seikkal derivative [21], 

Narayanamoorthy et al. [16, 17] applied Runge-third Kutta's approach to resolve fuzzy differential 

conditions. 

The purpose of this article, which is an expansion of [16], is to examine the performance of the 

time lag differential condition approach in a fuzzy environment. The targeted strategy integrates 

seamlessly into the physical development's structure. We provide a mathematical explanation to help 

you comprehend the suggested tactic. 

 

II.  Preliminaries 

 

Definition 1.The trapezoidal fuzzy number is defined by four real numbers "a,b,c,d" . A trapezoidal fuzzy 

number will be denoted by the membership function is defined as the 
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Definition 2.Fuzzy set " "A is the triangular fuzzy number with peak (or center) " "a , left width > 0  

and right > 0   , has the following form   
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Figure 2.1: Trapezoidal Fuzzy Number 

Figure 2.1: Triangular Fuzzy Number 
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III. RUNGE-KUTTA-FEHLBERG METHOD 

Fuzzy delay differential equations are solved using a Runge-Kutta-Fehlberg (RKF) method that is 

built from scratch in this session's fuzzy environment. Let " ,1 2Q QQ =    " be the exact answer to the 

ambiguous beginning value problem, and " ,q1 2qq =    " be the approximate solution. The solution is the 

calculated phase points                             
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IV.  ILLUSTRATIVE EXAMPLE 

 

Consider the linear fuzzy delay differential equation 
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subject to initial conditions (0) 1 = , then by Definition 1, we have ( ) ( )0 0.8 0.125 ,1.1 0.1  = + −  

The exact solution of (4.1) is 
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To approximate (4.1) by the RKF method, it can be written in an operator form 
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    (4.3) 

With the initial condition ( ) ( )0 0.8 0.125 ; 0 1.1 0.1   = + = −  

Table 4.1: Approximate Values 

 Runge-Kutta Fehlberg method Runge-Kutta fourth order method 

  ( )i  ( )i  ( )i  ( )i  

0 1.718802 3.718802 1.718282782 3.718282782 

0.2 1.918802 3.518802 1.918282782 3.518282782 

0.4 2.118802 3.318802 2.118282782 3.318282782 

0.6 2.318802 3.118802 2.318282782 3.118282782 

0.8 2.518802 2.918802 2.518282782 2.918282782 

1 2.718802 2.718802 2.718282782 2.718282782 

 

Table 4.2: Error Table 

 Exact Solution
 Runge-Kutta Fehlberg 

method 

Runge-Kutta fourth order 

method 

  ( ),U    ( ),U    ( ),u    ( ),u    ( ),u    ( ),u    

0 0 5.436563657 1.719012514 1.71755143 1.71828278 1.718280875 

0.2 0.543656366 4.892907291 1.375356148 1.37389478 1.37462642 1.374624509 

0.4 1.087312731 4.349250925 1.031699783 1.03023841 1.03097005 1.030968143 

0.6 1.630969097 3.805594559 0.680932157 0.68658205 0.68731369 0.687311777 

0.8 2.174625463 3.261938194 0.337275788 0.34292568 0.34365732 0.343655412 

1 2.718281828 2.718281828 0.000730686 0.00073069 9.54*10-7 9.54*10-7 

Examination of above results are compared in following figures, in figure 4.1 both the method are 

compared with the exact solution and in figure 4.2 shows the bond between the two method.  
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Figure 4.1: Comparison Between Approximate and Exact Solution Figure  

4.2: Comparision Between RKF and RK4th order Methods 

On with Triangular Fuzzy number (Definition 2), (0) ( ,2 )u  = −  

The exact solution of (4.1) is 
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To approximate (5.1) by the RKF method, and general form as (5.3) 
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u e u u

x
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 
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      (5.3)

 

with the initial condition ( ) ( )0 , 0 2 .u u = = −  

The value of the approximate method is tabulated below with 1. =  

Table 4.3: Approximate Values 

 Runge-Kutta Fehlberg method Runge-Kutta fourth order method 

  ( ),u    ( ),u    ( ),u    ( ),u    

0 1.718802 3.718802 1.718282782 3.718282782 

0.2 1.918802 3.518802 1.918282782 3.518282782 
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0.4 2.118802 3.318802 2.118282782 3.318282782 

0.6 2.318802 3.118802 2.318282782 3.118282782 

0.8 2.518802 2.918802 2.518282782 2.918282782 

1 2.718802 2.718802 2.718282782 2.718282782 

Table 4.4: Error Table 

 Exact Solution
 Runge-Kutta Fehlberg 

method 

Runge-Kutta fourth order 

method 

  ( ),U    ( ),U    ( ),u    ( ),u    ( ),u    ( ),u    

0 0 5.436563657 1.719012514 1.71755143 1.71828278 1.718280875 

0.2 0.543656366 4.892907291 1.375356148 1.37389478 1.37462642 1.374624509 

0.4 1.087312731 4.349250925 1.031699783 1.03023841 1.03097005 1.030968143 

0.6 1.630969097 3.805594559 0.680932157 0.68658205 0.68731369 0.687311777 

0.8 2.174625463 3.261938194 0.337275788 0.34292568 0.34365732 0.343655412 

1 2.718281828 2.718281828 0.000730686 0.00073069 9.54*10-7 9.54*10-7 

Examination of above results are compared in following figures, in figure 4.3 both the method are 

compared with the exact solution and in figure 4.4 shows the bond between the two method.  

 

Figure 4.3: Comparison Between Approximate and Exact SolutionFigure 4.4: Comparision Between RKF 

and RK4th order Methods 

V. Conclusion 

Two distinct fuzzy numbers are used to test the efficacy of the suggested method for solving fuzzy delay 

difference equations. The accuracy of the suggested technique is demonstrated using a numerical example, 

which demonstrates the performance of the implement number system and compares it to that of the 

precise and Runge-Kutta Fehlberg method. When compared to its triangular counterpart, the trapezoidal 

fuzzy number exhibits superior convergence. 
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