

IMPLEMENTATION OF POWER GATED ALU FOR LOW POWER PROCESSOR

K PRASAD BABU¹, DR.K.E. SREENIVASA MURTHY², DR. M.N. GIRI PRASASD³ ¹15PH0426, Department of ECE, JNTUA, Anantapuramu, Andhra Pradesh, India, <u>kprasadbabuece433@gmail.com</u> ²Pricipal & Professor, Department of ECE, RECW, Kurnool, Andhra Pradesh, India, <u>kesmurthy1969@gmail.com</u> ³Director of Academics & Audit, Professor, Department of ECE, JNTUA, Anantapuramu, Andhra Pradesh, India, <u>giriprasadmn.ece@jntua.ac.in</u>

ABSTRACT

Low power designs are needed not only for moveable applications, but also to lessen power in high power systems. Power consumption can be miniaturize at the system level, architectural level, algorithm level, micro-architectural level, gate level, or circuit level. Power gating of functional system has proven to be a compelling approach to cut back power consumption. With the each requirement for high speed, low power consumption, and huge performance endure to increase year after year, devices must be scaled to lower dimensionality. Current technology sees power utilization as the restraining factor. A high power supply will affect the temperature, which will affect the cooling cost of the chip. In this work the power gated ALU with minimal functions is designed and implemented. Comparison is made with presence of nmos transistor and without it. 120nm technology is employed for the design. MOS model3 parameters with 120nm technology is used in the design.1-bit ALU, 4-bit ALU and 8-bit ALU are designed and implemented with power comparisons.

Keywords: Power-Gating, ALU, Low Power, 120nm, MOS model 3, Low Power Processor.

1. INTRODUCTION

With the advent of low power applications the need for effective techniques has been primary concern. Power gating is a technique used in VLSI design to reduce power consumption by turning off power to unused or idle circuits. It can be accomplished with PG cells, which reins the flow of power to certain parts of a chip. When a circuit is not in use, its power gating cell can be turned off, effectively cutting power to that circuit and reducing overall power consumption. The Power gated concept is widely employed at different sources, depending upon application type that can be Block level, Gate level/ device level. It is a widely used technique in low-power designs of processor which are used in mobile and IoT applications. Most of the Current processors employ the basic ALU which are designed & implemented using basic circuitry. They are designed to perform a wide range of operations quickly and efficiently, allowing the CPU to execute instructions and perform complex calculations. An Arithmetic Logic Unit is a digital circuit that performs arithmetic and logic operations on binary numbers. The ALU can be designed to perform a variety of operations, including addition, subtraction, multiplication, division, and logical operations such as AND, OR, and NOT. The specific design of the ALU will depend on the operations it needs to perform and the desired level of performance. the parameters are drastically changing with the advent in every year as shown in below figure

Technology year	2009	2010	2011	2012	2013	2014	
Dimensions							
MPU Half-Pitch $(nm)^{\dagger}$	54	45	38	32	27	24	
Physical Lgate (HP) $(nm)^{\dagger}$	29	27	24	22	20	18	
Supply Voltage Parameters	Supply Voltage Parameters						
VDD $(HP)^{\dagger}$	1.00	0.97	0.93	0.90	0.87	0.84	
VDD $(LOP)^{\dagger}$	0.95	0.95	0.85	0.85	0.80	0.80	
Interconnect-Related Parameters							
Capacitance $(pF/cm)^{\ddagger}$	1.75	1.75	1.75	1.65	1.65	1.65	
Total length $(Km/cm^2)^{\ddagger}$	2.00	2.22	2.50	2.86	3.13	3.57	
Transistor-Related Paramete	rs						
Ioff (HP) $(\mu A/um)^{\dagger\ddagger}$	0.17	0.46	0.71	0.70	0.64	0.69	
Ioff (LSTP) $(pA/um)^{\dagger\ddagger}$	30.5	30.7	30.2	30.2	30.9	31.7	
Cg,total (HP) $(fF/\mu m)^{\dagger}$	1.00	0.97	0.93	0.95	0.96	0.75	

Figure 1: ITRS parameters for previous years.

2. LITERATURE SURVEY

Below table is some of the findings made by doing literature survey.

SL.NO	AUTHOR	TITLE	YEAR	CONCEPT	METHOD
1	G.SARANYA, R.S. KIRUTHIKA	Optimized Design Of An Alu Block Using Architectural Level Of Power Optimization Techniques	Mar- 2011	ALU POWER REDUCTIO N	POWER GATING
2	N.RAVINDR AN,R.MARY LOURDE	An Optimum Vlsi Design Of 16-Bit Alu	Mar- 2015	ALU POWER REDUCTIO N	MIXED LOGIC
3	GUANG- MINGTANG, KENSUKE TAKATA	4-Bit Slice Alu For 32-Bit Rsfq Microprocessors	Jan- 2016	ALU FOR MIPS32 INSTRUCTI ON SET	SYNCHRON OUS CONCURRE NT FLOW CLOCKING
4	JINHUI WANG, NA GONG	DCT for Low Power Microprocessors	Feb- 2016	HIGHER POWER EFFICIENC Y	P-TYPE/N- TYPE DYNAMIC CIRCUIT SELECTION ALGORITHM & FCR
5	YU-GUANG CHEN,WAN- YU WEN	DLRSS For Low Power Optimization	Aug- 2016	EXTENSIO N OF DYNAMIC VOLTAGE FREQUENC Y	DLRS: DYNAMIC LOGIC RECONFIGU RABLE STRUCTURE

Table 1. Literature Survey and methods employed.

Vol 12 Issue 01 2023

BioGecko

				SCALING(D VFS)	
6	CHRISTOPHE R SCHAEF, JASON T STAUTH	Microprocessor Cores Stacked in Vertical Voltage using Domains Efficient Voltage Regulation	Feb- 2016	EFFICIENT VOLTAGE REGUALTI ON	POWER CONVERSIO N TOPOLOGY TO MULTICORE REGULATIO N
7	CHENG-YEN LEE,PING- HSUAN HSIES	StndrdCellDesignFlowCompatibleEnergyRecyclingLogic	Jan- 2016	LOW POWER	ENERGY RECYCLING MICROARCH ITECTURE & ADIABATIC LOGIC
8	AN-TAI XIAO,YUNG- SIANG MIAO	A Variable Voltage Low Power Technique For Digital Circuit System	Mar- 2016	LOW POWER	VOLTAGE FREQUENCY ADJUSTOR (VFA) & FREQUENCY DUTY CYCLE ADJUSTOR(F DCA) CIRCUITS
11	HAKONTOR EYIN,PAMEL A T BHATTI	LP ASIC Signal Processor for a Vestibular Prosthesis	Jun- 2016	LOW POWER PROCESSO R	COORDINAT E SYSTEM TRANSFOR MATION TO CORRECT FOR MISALIGNM ENT BETWEEN NATURAL SENSORS & IMPLANTED INERTIAL SENSORS

Vol 12 Issue 01 2023

12	SMITA SINGHAL,NI DHI GAUR	Analysis & Comparision Of Leakage Power Reduction Techniques In Cmos Circuits	Sep- 2015	LEAKAGE POWER REDUCTIO N TECHNIQU ES	MULTI- THRESHOLD CMOS, SUPER- CUTOFF CMOS,ZIGZA Q,STACK EFFECT,LEC TOR,SLEEPY STACK,SLEE PY KEEPER,DU AL SLEEP,SLEE PY-PASS GATE & TRANSISTO R GATING
13	JEFFERSON A HORA,NIEVA M MAPULA	For Ultra Low Power Application Design Of Rf To Dc Converter In 90nm Cmos Technology	Dec- 2015	ULTRA LOW POWER	VOLTAGE RECTIFIER IS USED
14	MANAS SINGHAL,RA JESH MEHRA	Area Efficient Low Skewed Even Parity Generator Layout Development	Dec- 2015	AREA EFFICIENC Y	UNSKEWED & LOSKEWED TECHNIQUE S
15	ANDRES GOMEZ,CHRI STIAN PINTO	ReducingEnergyConsumptionInMicrocontroller-Based Platforms WithLow DesignMarginCo-Processors	Oct- 2015	ENERGY MINIMIZA TION TECHNIQU ES	DVFS,THER MAL MANAGEME NT TECHNIQUE S
16	SARANG KULKARNI,N EHA RAI	Minimizing Leakage Current Using Cmos Technology for a 0.25µm Scvl Based 4T Dram Design	Sep- 2015	MINIMIZIN G LEAKAGE CURRENT	SELF CONTROLLA BLE VOLTAGE LEVEL TECHNIQUE
17	XIAOZHE LIU, YONGAN ZHENG	For Chinese Uhf Rfid Transponder An Ultra Low Power Digital Processor	Oct-2015	LOW POWER BASE BAND PROCESSO R FOR UHF RFID TAG	HIGHLY REUSED REGISTER BANK, LOW FRQUENCY DECODING & SORT ALGORITHM

Vol 12 Issue 01 2023

ISSN NO: 2230-5807

18	R	Signal Processing	Aug-	ADC	SUPPLY
	VANITHA,S. THENMOZHI	Applications design using Low Power Cmos Comparator and Bipolar Cmos Technology	2015		BOOSTING,B ODY- DRIVEN TRANSISTO RS, CURRENT MODE DESIGN
19	JENIL,RAHU L	Design&DevelopmentOfEfficientReversibleFloatingPointArithmetic Unit	Nov- 2015	REVERSIB LE FPAU	REVERSIBLE LOGIC,QUA NTUM CIRCUIT
20	TOMOKI, SHINTARO	A Low Power 6t-4c Non Volatile Memory Using Charge Sharing & Non-Precharge Techniques	Mar- 2015	FRAM	BITLINE NONPRECH ARGE TECHNIQUE, PLATE LINE CHARGE SHARE TECHNIQUE
21	G KARTHIK REDDY	Low Power PTL based ALU design using LP- FA Design	Mar- 2015	ALU DESIGN	PASS TRANSISTO R LOGIC
22	JAGADEEP KAUR, SHIWANI	Design Of Full Adder Circuit Using Double Gate Mosfet	Oct- 2015	FULL ADDER	DOUBLE GATE PTL
23	BALAMURU GAN V	Performance Analysis of ADML using Leakage Power Reduction Techniques	Jun- 2015	DYNAMIC POWER & LEAKAGE POWER	DUAL MODE LOGIC APPROACH
24	DANIEL,ALE XANDER	Intra-Operation Dynamic Voltage Scaling	Apr- 2015	VOTAGE SCALING	INTRA OPERATION DYNAMIC VOLTAGE SCALING
25	HIPPOLYTE, BHEKISIPHO	LeakageCurrentMinimization&PowerReductionTechniquesUsingSub-ThresholdDesign	Mar- 2015	LEAKAGE POWER REDUCTIO N TECHNIQU ES	SUBTHRESH OLD DESIGN

3. IMPLEMENTATION

The proposed work starts with single bit ALU and single bit power gated ALU, followed by the 4-bit ALU & 8-bit ALU implementations. Figure 2 depicts the MOS model parameters used for the design.

ISSN NO: 2230-5807

Mos Model 3 parameters						
Parameter	Definition	Typical Value 0.12µm				
		NMOS	pMOS			
VTO	Theshold voltage of a long channel	0.4V	-0.4V			
	device, at zero Vbs.					
U0	Carrier mobility	0.06 m ² /V.s	0.025 m ² /V.s			
TOX	Gate oxide thickness	3 nm	3 nm			
PHI	Surface potential at strong inversion	0.3V	0.3V			
LD	Lateral diffusion into channel	0.01µm	0.01µm			
GAMMA	Bulk threshold parameter	0.4 V ^{0.5}	0.4 V ^{0.5}			
KAPPA	Saturation field factor	0.01 V ⁻¹	0.01 V ⁻¹			
VMAX	Maximum drift velocity	150Km/s	100Km/s			
THETA	Mobility degradation factor	0.3 V ⁻¹	0.3 V ⁻¹			
NSS	Substhreshold factor	0.07 V ⁻¹	0.07 V ⁻¹			
W	MOS channel width	0.5-20µm	0.5-40µm			
L	MOS channel length	0.12µm	0.12µm			

Figure 2. MOS model3 parameters for 120nm.

Power gating is effective in reducing power consumption. Power gating is a technique that temporarily shuts down unused circuit blocks to reduce overall chip leakage. This temporary shutdown time is also called "sleep mode" or "inactivity mode". When circuit blocks are needed again for operation, they are activated into "active mode". These two modes are switched at the right time and in the right manner to maximize power performance with minimal performance impact. Therefore, the purpose of power gating is to minimize power leakage by temporarily removing power to selected blocks that are not needed in this mode. Power gating has a greater impact on design architecture than clock gating. The time delay is increased due to the need to safely enter and exit power gated mode. The amount of leakage power savings possible in such low-power modes and the energy dissipation to enter and exit such modes leads to several architectural tradeoffs. Block shutdown can be done in software or hardware. Driver software can schedule shutdown events. You can use a hardware timer. A dedicated power management controller is another option. Power gating uses low-leakage PMOS transistors as header switches to turn off parts of the design in standby or sleep mode. An NMOS footswitch can also be used as a sleep transistor. The insertion of sleep transistors divides the chip's power grid into a permanent power grid connected to the power supply and a virtual power grid that drives the cells and can be switched off. The quality of this complex power grid is critical to a successful power gating design. Two of the most important parameters are IR drop and the cost of silicon area and routing resources. Power gating can be implemented using a cell or cluster-based (or fine-grained) approach, or a distributed coarse-grained approach. Successful implementation of this methodology requires consideration of the following parameters and careful selection of their values. Power Gate Size, Gate Controlled Slew Rate, Simultaneous Switching Capacitance, Power Gate Leakage, Fine Grain Power Gating, Coarse Grain Power Gating.

The ALU performs the basic operations of Add, Sub, Or, And & NOP with the combinations od selection lines S0,S1 respectively. Power gating technique with fine grain methodology is employed as shown in figure 2a.

Vol 12 Issue 01 2023

ISSN NO: 2230-5807

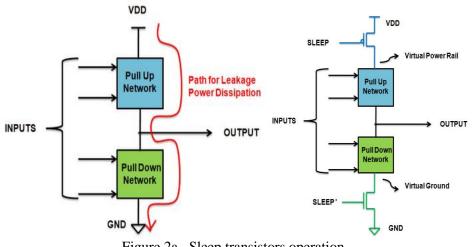


Figure 2a. Sleep transistors operation.

The proposed design of single bit ALU is shown in fig3 and power gated single bit ALU is shown in fig 6.

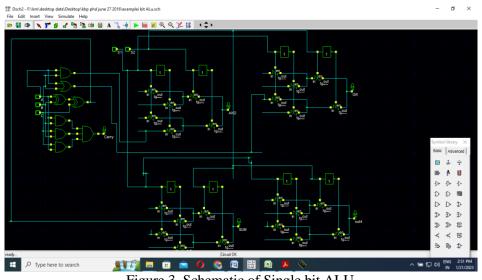


Figure 3. Schematic of Single bit ALU

Vol 12 Issue 01 2023

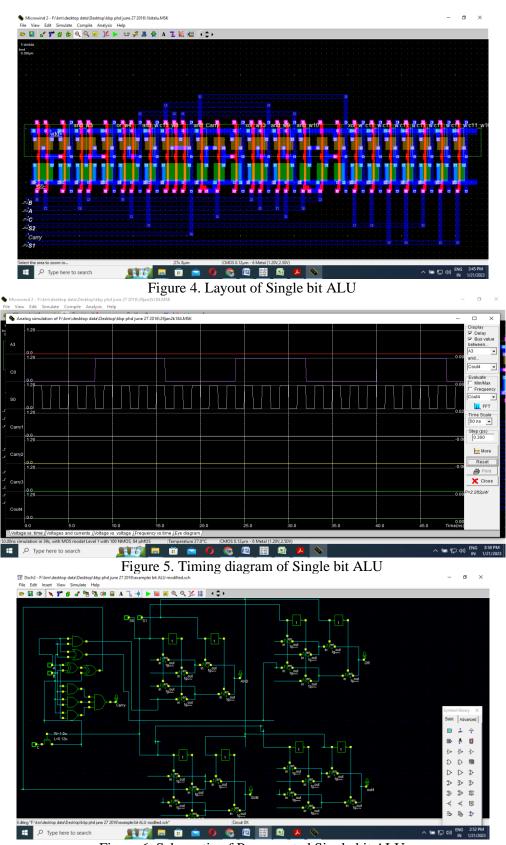
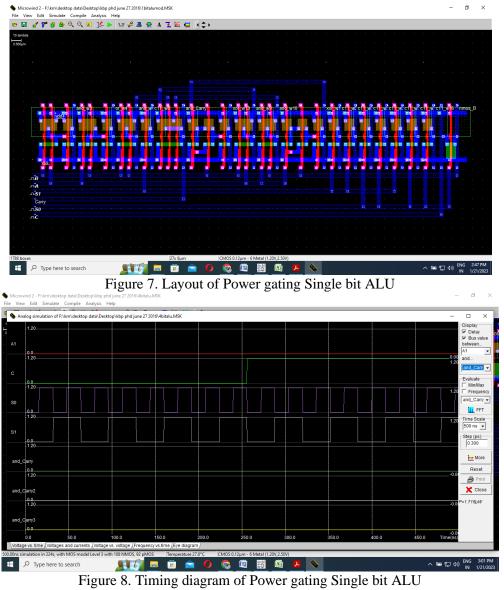
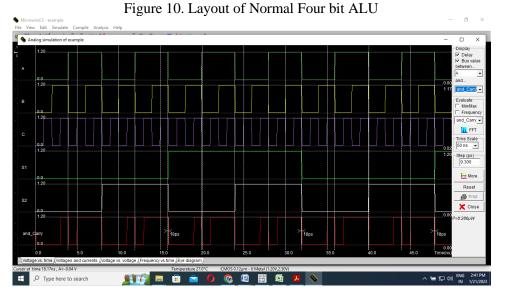



Figure 6. Schematic of Power-gated Single bit ALU

Vol 12 Issue 01 2023



Vol 12 Issue 01 2023

👥 👘 🗖 😭 📀 🕐 😨 📰 🛤 🖊 💊

Vol 12 Issue 01 2023

ISSN NO: 2230-5807

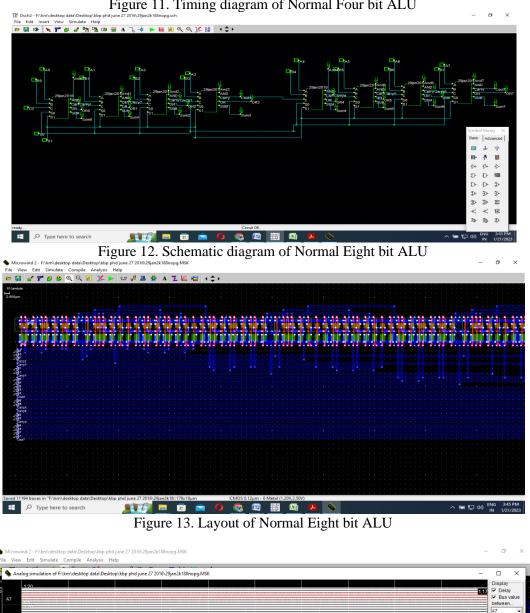


Figure 11. Timing diagram of Normal Four bit ALU

0.0 0.0 0.6 0.5 0.5 🔣 More Reset B Print 0.56 X Close 17.601µW 0.5 😰 🧱 🗄 🔎 Type here to search 💼 🔘 8 X

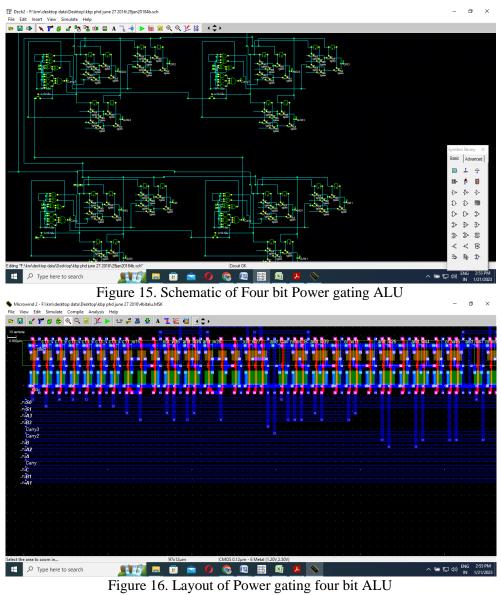


Figure 14. Timing diagram of Normal Eight bit ALU

Vol 12 Issue 01 2023

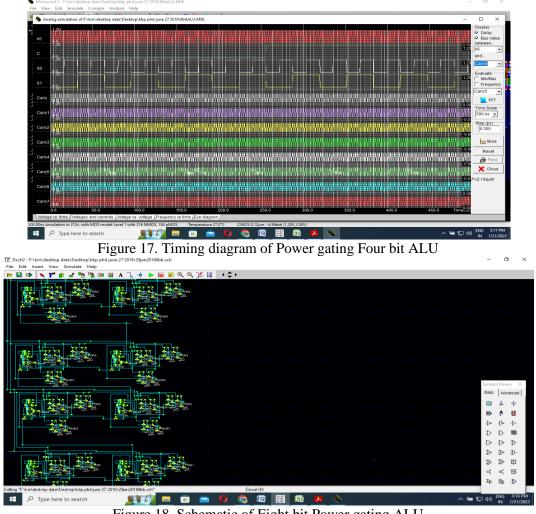


Figure 18. Schematic of Eight bit Power gating ALU

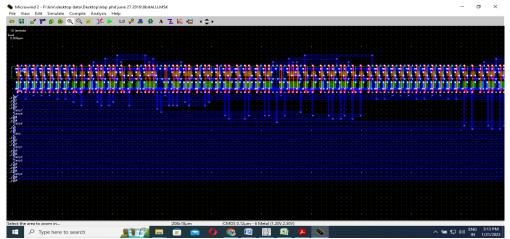


Figure 19. Layout of Power gating Eight bit ALU

Vol 12 Issue 01 2023

ISSN NO: 2230-5807

Figure 20. Timing diagram of Power gating Eight bit ALU

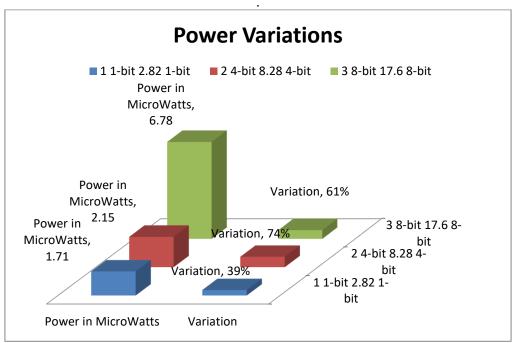


Figure 21. Power dissipation comparisons in µW of Power Gated & Normal ALU

CONCLUSIONS

In the proposed design the power dissipations are obtained with 120nm mos3 model files and the tabular form is shown below table3.

Sl.No	NORMAL- ALU	Power in MicroWatts	POWERGATED- ALU	Power in MicroWatts	Variation
1	1-bit	2.82	1-bit	1.71	39%

2	4-bit	8.28	4-bit	2.15	74%
3	8-bit	17.6	8-bit	6.78	61%

We can conclude that for power-gated ALU design there is around 39-77% variations in power dissipation. In future we can use more number of add-on functions to the ALU and can be effectively replaced with Reversible logic gates, Finfet gates.

REFERENCES

- [1] G.SARANYA, R.S. KIRUTHIKA OPTIMIZED DESIGN OF AN ALU BLOCK USING ARCHITECTURAL LEVEL OF POWER OPTIMIZATION TECHNIQUES 3/1/11 IEEE XPLORE 168-172
- [2] N.RAVINDRAN,R.MARY LOURDE AN OPTIMUM VLSI DESIGN OF 16-BIT ALU 3/1/15 IEEE XPLORE 52-55
- [3] GUANG-MINGTANG,KENSUKE TAKATA 4-BIT SLICE ALU FOR 32-BIT RSFQ MICROPROCESSORS 1/1/16 IEEE TRANSACTIONS ON SUPERCONDUCTIVITY VOL 26 NO.1 1112-1120
- [4] JINHUI WANG, NA GONG PNS-FCR:FLEXIBLE CHARGE RECYCLING DYNAMIC CIRCUIT TECHNIQUE FOR LOW POWER MICROPROCESSORS 2/1/16 IEEE TRANSACTIONS ON VLSI VOL 24 NO.2 613-624
- [5] YU-GUANG CHEN,WAN-YU WEN A NOVEL LOW COST DYNAMIC LOGIC RECONFIGURABLE STRUCTURE STRATEGY FOR LOW POWER OPTIMIZATION 8/1/16 IEEE XPLORE 250-255
- [6] CHRISTOPHER SCHAEF, JASON T STAUTHEFFICIENT VOLTAGE REGULATION FOR MICROPROCESSOR CORES STACKED IN VERTICAL VOLTAGE DOMAINS 2/1/16 IEEE TRANSACTIONS ON POWER ELECTRONICS VOL.31.NO.2 1795-1808
- [7] CHENG-YEN LEE,PING-HSUAN HSIES A STANDARD CELL DESIGN FLOW COMPATIBLE ENERGY RECYCLING LOGIC WITH 70% ENERGY SAVING 1/1/16 IEEE TRANSACTIONS ON CIRCUITS & SYSTEMS-1. VOL.63 NO.170-79
- [8] AN-TAI XIAO,YUNG-SIANG MIAO A VARIABLE VOLTAGE LOW POWER TECHNIQUE FOR DIGITAL CIRCUIT SYSTEM 3/1/16 IEEE XPLORE 13-14
- [11] HAKONTOREYIN,PAMELA T BHATTI A LOW POWER ASIC SIGNAL PROCESSOR FOR A VESTIBULAR PROSTHESIS 6/1/16 IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS & SYSTEMS VOL.10.NO 3 768-778
- [12] SMITA SINGHAL,NIDHI GAUR ANALYSIS & COMPARISION OF LEAKAGE POWER REDUCTION TECHNIQUES IN CMOS CIRCUITS 9/1/15 IEEE XPLORE 936-944
- [13] JEFFERSON A HORA,NIEVA M MAPULA DESIGN OF RF TO DC CONVERTER IN 90NM CMOS TECHNOLOGY FOR ULTRA LOW POWER APPLICATION 12/1/15 IEEE XPLORE 121-126
- [14] MANAS SINGHAL, RAJESH MEHRA LAYOUT DEVELOPMENT OF AREA EFFICIENT LO-SKEWED EVEN PARITY GENERATOR 12/1/15 IEEE XPLORE 614-618
- [15] ANDRES GOMEZ, CHRISTIAN PINTO REDUCING ENERGY CONSUMPTION IN MICROCONTROLLER-BASED PLATFORMS WITH LOW DESIGN MARGIN CO-PROCESSORS 10/1/15 IEEE XPLORE 269-272

Vol 12 Issue 01 2023

ISSN NO: 2230-5807

- [16] SARANG KULKARNI,NEHA RAI A 0.25µm SCVL BASED 4T DRAM DESIGN FOR MINIMIZING LEAKAGE CURRENT USING CMOS TECHNOLOGY 9/1/15 IEEE XPLORE 230-233
- [17] XIAOZHE LIU, YONGAN ZHENG AN ULTRA LOW POWER DIGITAL PROCESSOR FOR CHINESE UHF RFID TRANSPONDER 10/1/15 IEEE XPLORE 83-86
- [18] R VANITHA,S.THENMOZHI LOW POWER CMOS COMPARATOR USING BIPOLAR CMOS TECHNOLOGY FOR SIGNAL PROCESSING APPLICATIONS 8/1/15 IEEE XPLORE 1241-1243
- [19] JENIL, RAHUL DESIGN & DEVELOPMENT OF EFFICIENT REVERSIBLE FLOATING POINT ARITHMETIC UNIT 11/1/15 IEEE XPLORE 811-815
- [20] TOMOKI, SHINTARO A LOW POWER 6T-4C NON VOLATILE MEMORY USING CHARGE SHARING & NON-PRECHARGE TECHNIQUES 3/1/15 IEEE XPLORE 2904-2907
- [21] G KARTHIK REDDY LOW POWER PASS TRANSISTOR LOGIC BASED ALU DESIGN USING LOW POWER FULL ADDER DESIGN 3/1/15 IEEE XPLORE 131--136
- [22] JAGADEEP KAUR, SHIWANI DESIGN OF FULL ADDER CIRCUIT USING DOUBLE GATE MOSFET 10/1/15 IEEE XPLORE 57-60
- [23] BALAMURUGAN V PERFORMANCE ANAYSIS OF ASYNCHRONOUS DUAL MODE LOGIC USING LEAKAGE POWER REDUCTION TECHNIQUES 6/1/15 IEEE XPLORE 46-50
- [24] DANIEL,ALEXANDER INTRA-OPERATION DYNAMIC VOLTAGE SCALING 4/1/15 IEEE XPLORE 70-77
- [25] HIPPOLYTE,BHEKISIPHO LEAKAGE CURRENT MINIMISATION & POWER REDUCTION TECHNIQUES USING SUB-THRESHOLD DESIGN 3/1/15 IEEE XPLORE 146-150

K Prasad Babu is working as an Associate Professor in the department of Electronics and Communication Engineering of Ashoka Women's Engineering College, Kurnool, Andhra Pradesh, India. He has 16 years of Teaching experience. He has received his B.Tech from JNTUH, M.Tech from GPREC. Currently he is Research Scholar in ECE Dept with research area as VLSIDesign, JNTUA College of Engineering, Anantapuram, Andhra Pradesh, His research areas of interest includes VLSI, Embedded Systems, Image Processing. He has published several papers in national and international journals.

Dr. K.E.Sreenivasa Murthy is currently working as Principal & Prof, Ravindra College of Engineering for Women, Kurnool, Andhra Pradesh, India. In the year 1989, K.E.Sreenivasa Murthy completed his B.Tech from S.V.University, Andhra Pradesh, In the year 1992 he finished M.Tech from S.V.University, Andhra Pradesh. In 2003 he obtained the PhD degree from S.K.University, Andhra Pradesh Overall experience in teaching is 28 years. His areas of interest

Vol 12 Issue 01 2023

ISSN NO: 2230-5807

include Embedded systems, Microcontrollers. He authored several national, international journals and conference manuscripts. He is life time member of ISTE and Instrumentation Society of India. He is member of IEE and IETE.

Dr M.N. Giri Prasad is working as Director of Academics & Audit, JNTUA, and Professor in the Department of Electronics and Communication Engineering at JNTUA College of Engineering, Anantapur, Andhra Pradesh, India. He received his B.Tech degree from JNTU College of Engineering, Anantapur, Andhra Pradesh, India in the year 1982, M. Tech degree from Sri Venkateswara University, Tirupati, Andhra Pradesh, India in the year 1982, M. Tech degree from J.N.T University, Hyderabad, Andhra Pradesh, India in 2003. He is having more than 32 years of teaching experience. His research areas are Wireless Communications, Biomedical Instrumentation, signal processing, Image processing, embedded systems and microcontrollers. He has published more than 35 papers in national and international conferences. Around 70 papers published in national and international journals. He is a life member of ISTE, IEI and NAFEN.