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Abstract: The development of novel approaches, such as supervised machine learning algorithms that 

can quickly determine the mechanical characteristics of fiber-reinforced concrete, has been the focus of 

research. The objective of this study is to predict the flexural strength (FS) of steel fiber-reinforced 

concrete (SFRC) utilising computational techniques necessary for efficient and rapid examination. To do 

this, a database containing the SFRC flexural data was compiled from literature research. To forecast the 

28-day flexural strength of steel fiber-reinforced concrete, three ensembled models using machine 

learning techniques—Gradient Boosting (GB), Random Forest (RF), and Extreme Gradient Boosting 

(XGB)—were taken into consideration. Utilising the coefficient of determination (R2), statistical analysis, 

and k-fold cross-validation, the effectiveness of each approach was evaluated. To examine how different 

variables affected the ability to anticipate outcomes, a sensitivity method was also applied. According to 

the investigation, the GB and RF models performed admirably, and the XGB method was within 

acceptable bounds. With an R2 of 0.96, Gradient Boosting outperformed Extreme Gradient Boosting 

(XGB) and Random Forest (RF), which had R2 values of 0.94 and 0.86, respectively. Additionally, based 

on lowered error levels, statistical and k-fold cross-validation tests supported that Gradient Boosting was 

the top performance, followed by Random Forest (RF). Performance of the Extreme Gradient Boosting 

model was good. These ensemble machine learning techniques, especially for fiber-reinforced concrete, 

can help the construction industry by delivering quick and improved analyses of material characteristics. 

 

Keywords: Concrete; steel fibre; concrete reinforced with steel fibre; flexural strength; mechanical 

properties; building materials 

 

1 Introduction 

According to earlier works of literature [1-6], the addition of steel fibres to concrete enhances its 

mechanical properties, including compressive strength, flexural strength, and tensile strength. This makes 

the concrete harder and more resistant to cracking. Flexural strength was much higher in steel fiber-

reinforced concrete than in unreinforced concrete [7]. Investigations on the flexural behaviour of SFRC 

beams revealed that adding more steel fibre enhanced strength, toughness, and load-bearing capacity [8]. 

Concrete's lifespan and resistance to freezing were both improved by the inclusion of up to 15% steel 

fibres [9]. In terms of fibre volume fraction and curing time, the FS of SFRC was examined. It was shown 

that SFRC flexural toughness requires high-performance steel fibre and a high fibre volume percentage. 

Experimental research on the effects of fibre content and concrete strength on SFRC flexural behaviour 

was conducted [11].High-strength SFRC's toughness was increased by adding steel fibre and silica fume 

[12]. The flexural response of SFRC beams was studied analytically, and experimental findings were 

presented. The results showed that the increased steel fibre volume improved post-peak ductility, 

deflection capacity, and flexural strength [13]. Concerning the amount of steel fibres and the coarseness 

of the particle size, the mechanical properties of high-strength concrete were investigated. The findings 
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demonstrated that increasing the fibre content significantly raised the compressive and flexural toughness 

of the SFRC [14].  

Recently developed machine learning (ML) algorithms are essential to the civil engineering sector 

because they can accurately anticipate the mechanical properties of concrete. Data analysis is carried out 

using machine learning (ML), a field of computer science that automates the development of analytical 

models. Algorithms for machine learning are created to learn from previously gathered data. Because it 

can handle a variety of different types and sizes of data, ML has become more and more popular. The 

computer process is also more efficient and less expensive. As a result, models for analysing large and 

complex data sets as well as for producing quicker and more accurate findings may be easily and 

automatically constructed.The use of these models yields extremely accurate predictions, enabling more 

skillful decisions and intelligent actions to be taken in real-time without requiring human interaction [26]. 

To reduce material and experimentation cycle waste, ML models to estimate concrete strength are 

currently being developed. One of the most cutting-edge modelling strategies utilised in civil engineering 

is artificial intelligence (AI) methodology, namely machine learning (ML). 

These methods model reactions using input variables. Researchers have recently concentrated on the 

compressive strength of concrete as well as other strength features including flexural strength, tensile 

strength, and concrete durability using supervised machine learning approaches.Behnood et al. 

investigated the compressive, flexural, and split tensile strengths of concrete using the M5P model [27].  

2. Data Description 

The dataset was specifically produced using information from concrete with hook-end steel fibres.17 

sources were used to get the data [8,11-14]. The outcomes that had a substantial influence on the criteria 

were chosen and processed. As a result, there are 10 different pieces in the dataset, comprising input and 

output data. These ten factors—each of which has an impact on SFRC flexural strength—were taken into 

consideration when estimating SFRC flexural strength. 

2.1 Water and Cement 

Prior studies have shown that concrete strength is strongly influenced by the water-to-cement ratio. 

Flexural strength and compressive strength are said to diminish when the water-cement ratio rises, 

according to Abbass et al. 29]. The flexural and compressive strengths of self-consolidating concrete were 

significantly impacted by the water-cement ratio, according to Reddy et al. [30]. Nili et al. proved through 

scientific research that SFRC achieved superior flexural strength with a lower water-cement ratio [31]. 

Using various cement doses and water-cement ratios, Merve A. Ikgen et al. studied the link between 

SFRC splitting tensile and flexural strength [32]. Wei Li looked into how the water-cement ratio affected 

the performance of concrete and found that when the ratio increases, the strength of the concrete 

decreases [33].Experimental research by M. S. Ahmad Shah et al. on the flexural strength of concrete at 

different water-cement ratios came to the conclusion that the flexural strength increased with increasing 

water-cement proportion [34]. Chang Joon Lee et al. investigated the effects of fibre content and the 

water-cement ratio on the flexural toughness of SFRC. A quicker flexural toughness convergence rate is 

produced by a lower water-cement ratio and a greater fibre volume [35]. E. K. Z. Balanji looked into the 

effects of steel fibre content and varied water-cement ratios on the mechanical properties and impact 

resistance of steel fibre concrete. When the water-cement ratio was smaller, steel fibres had a greater 

positive impact on mechanical properties and impact resistance [36].  

2.2. Sand and Aggregate 

A significant component has been identified as the effect of sand and aggregate fraction on the strength 

characteristics of SFRC. Kim et al. discovered that the SFRC's compressive and flexural strengths were 

increased by the larger sand to aggregate ratio [37]. According to Chitlange et al. [38], there was a 

significant difference in the flexural and compressive strength of concrete depending on the quantities of 

sand and aggregate employed. A comparison study of the flexural strength of concrete with various 

aggregate volumes and types was conducted by K. B. Dashrath et al. [39]. El-Ariss investigated the 

effects of the water-cement ratio, sand content, and curing procedure on the strength of concrete [40]. U. 
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M. Tarek and others.found the appropriate sand-aggregate ratio by analysing the impact of various sand-

aggregate ratios on concrete strength parameters [41]. M. Sunarso and coworkers did researchsand-

aggregate percentage and additive dosage effects on a variety of high-strength concrete properties [42]. 

Due to its significance in the concrete's strength characteristics, the sand to aggregate ratio was taken into 

consideration when designing the ML models. 

2.3. Superplasticizer 

A superplasticizer is a chemical that reduces the amount of water in concrete, which increases the strength 

of the final product. M. Khan and M. Ali [44] used superplasticizer and pozzolanic additives to enhance 

the mechanical qualities of concrete. Increased superplasticizer concentration improved the slump and 

strength characteristics of concrete, according to Aruntas et al. [45]. As a result, a superplasticizer was 

incorporated into the ML models to see how it would affect the SFRC's flexural strength. 

2.4. Silica Fume 

In different amounts, silica fume has been used to enhance the concrete's strength properties. According to 

Köksal et al., the addition of more silica fume increased the compressive and flexural strength of concrete 

[12]. According to M. Nili and V. Afroughsabet [25], the combined use of steel fibres and silica fume 

significantly increased the concrete's flexural strength. Concrete's flexural strength can be increased by 

15% by replacing up to 7.5% of the cement with silica fume, according to M. Shafieyzadeh 

[41].According to M. Shmlls et al., silica fume and fly ash dose together improved the strength 

characteristics of concrete [42]. One factor that affects the strength properties of SFRC was found to be 

the silica fume inclusion. 

2.5. Fly Ash 

Both the workability of flexible concrete and the strength characteristics of hardened concrete are 

improved by fly ash. Fly ash was added to SFRC, and R. M. K. Saravana and A. Sumathi found that this 

increased the concrete's strength over time [44]. The impact of fly ash and steel fibres on the durability of 

pozzolana cement concrete was examined by M. A. Challoob et al. [44]. A.K. Saha discovered that the 

addition of fly ash progressively enhanced the concrete's strength [46]. Fly ash was partially added to 

high-strength concrete, according to P. Nath and P. Sarker, which increased its durability properties [47]. 

Fly ash was chosen as a variable as a result because of its connection to specific attributes. 

2.6. Steel Fiber Volume, Length and Diameter 

According to the literature, the percentage, length, and thickness of the steel fibres significantly affect the 

flexural strength of concrete. According to Yazici et al., adding more steel fibre to concrete boosted its 

compressive and flexural strength [7]. According to Köksal et al.'s experimental examination using fibre 

volume fractions up to 1% [12], SFRC compressive and flexural strength increased. According to A. A. 

Jhatial et al., the increasing steel fibre content enhanced the flexural and compressive strength [48]. Steel 

fibres in concrete significantly improved the strength and endurance of hardened concrete, according to 

research by H. K. Hussain et al. The addition of steel fibres with hooked ends greatly enhanced the 

flexural strength [49]. 

 Mean Standard 

Error 

Median Mode Range Minimum Maximum Count 

Cement (kg/m3) 451.78 8.37 400 400 509 280 789 173 

Water (kg/m3) 170.66 2.29 158 152 137 133 270 173 

Sand (kg/m3) 782.75 11.47 740 835 768 582 1350 173 

Coarse 

Aggregate (kg/m3) 
927.09 20.63 1050.5 1047 1170 0 1170 173 

Superplasticizer (%) 0.91 0.13 0.15 0 5 0 5 173 

Silica fume (%) 6.33 0.89 0 0 43 0 43 173 
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Fly Ash (%) 1.30 0.42 0 0 30 0 30 173 

Volume fraction of the 

hooked steel fiber (%) 
0.85 0.05 1 0.5 2 0 2 173 

Fiber Length (mm) 40.41 1.21 35 60 60 0 60 173 

Fiber diameter (mm) 0.59 0.01 0.615 0.75 0.9 0 0.9 173 

Flexural Strength; 

MPa (28 days) 
10.04 0.63 7.82 0 41.7 0 41.7 173 

 

3. Research Strategy 

The machine learning models were created using python code and anaconda software. Programmes that 

provide direction through Conda packages, channels, and environments can run using the Anaconda 

navigator, a graphical user interface that is part of the Anaconda software, without the need for command-

line expertise. Additionally, it offers Python and R programming languages with an emphasis on package 

development and maintenance for use in data science and machine learning applications. Gradient 

Boosting (GB), Random Forest (RF), and Extreme Gradient Boosting (XGB) were employed in this study 

to predict the flexural strength of the SFRC. For model execution, the Anaconda navigator's Spyder 

(version: 4.3.5) was utilised. To assess the level of accuracy, the R2 value of each model's expected result 

was employed. 

 
Figure 2. Methodology of research in order. 

4. Results and Discussions  

4.1. Statistical Analysis Explanation 

Figure 3 displays a statistical trend comparing the actual and projected SFRC flexural strength after 28 

days using the R-F model. The R-F generates outcomes that fall within the permitted range and have a 

minimal difference between expected and actual results. The model's ability to estimate outcomes is 

demonstrated by its R 2 value of 0.94. Figure 4 shows the R-F model's deviations as well as the 

distribution of actual and anticipated results. The distribution's maximum, minimum, and average error 

values were, in order, 7.09, 0.036, and 1.50 MPa. It was discovered that 52% of the inaccurate readings 

fell below 1 MPa, 44% fell between the range of 1 to 5, and 3.8% fell over 5 MPa. These data show how 
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closely predicted and actual results match up.5 MPa. These statistics indicate the degree of agreement 

between expected and actual results. 

 
Figure 3. Relationship for R-F model: Experimental and estimated results. 

 
Figure 4. Experimental, estimated and, error values for R-F model. 

Figures 5 and 6 show the results of the G-B model. Figure 5 depicts the link between actual and 

anticipated results. R2 = 0.96, which is greater than that of the R-F model, demonstrates that the G-B 

strategy works better than the R-F model. Figure 6 shows the distribution of actual and projected values, 

as well as errors, in the G-B model. Maximum, lowest, and average error values for the distribution were 

5.4, 0.0026, and 1.34 MPa, respectively. The results showed that 42% of inaccurate readings were below 

1 MPa, 56% were in the range of 1 to 5 MPa, and 2% were over 5 MPa. The SFRC flexural strength can 

be predicted more precisely by the G-B model based on the R2 and error distribution of the R-F and G-B 

models. 
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Figure 5. Experimental and estimated results connection for G-B model. 

The link between the XGB model's actual and expected results is shown in Figure 7. The XGB model has 

an R2 value of 0.86, which indicates that it is less accurate than the R-F and G-B models. The distribution 

of errors and the actual and predicted values for the XGB model are also shown in Figure 8. The largest, 

lowest, and mean errors, in that order, were 8.88, 0.036, and 2.43 MPa. The results showed that 12% of 

the incorrect readings exceeded 5 MPa, 58% were between 1 MPa and 5 MPa, and 30% were less than 1 

MPa. The G-B model was more accurate than the R-F and XGB models in this investigation as a result of 

decreased inaccuracy and greater R2 values.   

4.2. Cross-Validation Using K Fold 

The model's validity is checked during execution using the k-fold cross-validation method. The accuracy 

of a model with a dispersed and divided data set into 10 groups is typically checked using this technique 

[94–96]. With one group, the model was tested, and the other nine were trained. In all, 70% of the data set 

was utilised for model training, while the final 30% was used to assess the models. 

The collection of observations must be randomly divided into k groups or folds that are approximately the 

same size. The subsequent k-1 folds are utilised to fit the process while the initial fold serves as a 

validation set.If the R2 value is high and the errors, such as MAE and RMSE, are small, the model is seen 

to be more accurate. To get a good outcome, you must repeat the method ten times. The model's great 

accuracy depends on this thorough approach. Additionally, all models were statistically analysed as errors 

(MSE and RMSE), as shown in Table 2. Equations (1) and (2) from the literature were employed in 

statistical analysis to evaluate how the models responded to estimate [97]. 

1 n 

MAE = ∑|xi − x| (1) 

n i=1 

RMSE  (2) 

where n = total number of sampled data. x, yref = reference values of data sample. xi, ypred = model-

predicted values. 

 

Table 2. Statistical analysis of the approaches used. 

Models MAE (MPa) RMSE (MPa) R2 

Random Forest 1.5 2.0 0.94 

Gradient Boosting 1.3 1.8 0.96 

XGBoost 2.4 3.3 0.86 
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In Figures 9 through 11, you can see the MAE, RMSE, and R2 distributions for the k-fold cross-

validation of the Random Forest, Gradient Boosting, and Extreme Gradient Boosting models. Figure 9 

displays the greatest, lowest, and average R2 values for the R-F model, which are 0.94, 0.34, and 0.69, 

respectively. As shown in Figure 10, the highest, minimum, and average R2 values for the G-B model are 

0.96, 0.33, and 0.74, respectively. The greatest, lowest, and average R2 values for the XGB are displayed 

in Figure 11, and they are 0.86, 0.36, and 0.64, respectively.When the error values were compared, the 

average MAE and RMSE for the R-F model were 2.94 and 4.58, respectively.   

 
Figure 9. Random Forest model with K-fold cross-validation representation. 

 
Figure 10. K-fold cross-validation representation for the Gradient Boosting model. 
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Figure 11. K-fold cross-validation representation for Extreme Gradient Boosting model. 

4.3. Sensitivity Analysis 

The purpose of this study is to determine how input factors affect SFRC flexural strength prediction. 

Figure 12 illustrates how input parameters affected the SFRC's forecast of flexural strength. Silica fume, 

which made up 21.7% of the total, was found to be the most important component, followed by cement 

(15.8%) and superplasticizer (6.4%). The remaining input factors, including sand (5.6%), water (11.2%), 

and coarse aggregate (8%), had a less significant impact on the flexural strength of the SFRC prediction. 

Impacts of steel fibre vf, fibre length, and fibre diameter were respectively 19.7%, 9.6%, and 2%. The 

results of the sensitivity analysis correlated with the amount of input parameters and data points used in 

the model design.   

Ni = fmax(xi) − fmin(xi) (3)  

The highest and lowest projected outputs over the ith output are represented by fmax(xi) and fmin(xi), 

respectively. 

 
Figure 12. The input variable’s contribution to the forecast. 

 

5. Discussions 

This study's objective was to ascertain whether SFRC flexural strength could be predicted using machine 

learning techniques. Three machine learning techniques were looked at: Extreme Gradient Boosting, 

Gradient Boosting, and Random Forest. The effectiveness of each technique was evaluated and compared 

in order to ascertain which one makes the most accurate predictions. With an R2 score of 0.96, the G-B 

model delivered a result that was more accurate. R2 was 0.81 and 0.87 for the R-F and XGB models, 

respectively. All models' efficacy was verified using statistical analysis and the k-fold cross-validation 

method. With fewer errors, the model performs better.The vulnerable intern is widely exploited by ML 
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approaches, which build sub-models that are maximised and trained on data to increase the value of R2. 

Figures 13–15 display the fluctuation in R2 values for several sub-models, including Random Forest, 

Gradient Boosting, and Extreme Gradient Boosting approaches. The highest, lowest, and mean R2 values 

for the Random Forest sub-model were 0.94, 0.34, and 0.69, respectively. The highest, minimum, and 

average R2 values for the Gradient Boosting (G-B) sub-models were 0.96, 0.63, and 0.79, respectively. 

For the Extreme Gradient Boosting sub-models, the highest, lowest, and mean R2 values were 0.87, 0.44, 

and 0.68, respectively. These findings show that the G-B sub-model outperforms the R-F and XGB sub-

models in terms of accuracy.   

 
Figure 13. The coefficient correlation (R2) values of the R-F sub-model. 

 

 
Figure 14. G-B sub-model’s coefficient correlation (R2) values. 
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Figure 15. XGB sub-model’s coefficient correlation (R2) values. 

 

6. Conclusion  

This study sought to estimate the 28-day SFRC flexural strength using three ensembled ML algorithms. 

To predict the results, models for Random Forest (R-F), Gradient Boosting (G-B), and Extreme Gradient 

Boosting (XGB) were used. The findings of this research are: 

1) When projecting SFRC flexural strength, the Extreme Gradient Boosting (XGB) model 

performed worse than the Gradient Boosting (G-B) and Random Forest (R-F) models. 

2) In terms of predicting the 28-day flexural strength of SFRC, the Gradient Boosting model 

performed better than the Extreme Gradient Boosting and Random Forest ensemble machine 

learning techniques. 

3) The coefficients of determination (R2) for the Random Forest, Gradient Boosting, and Extreme 

Gradient Boosting models are 0.94, 0.96, and 0.86, respectively. Although there is a small 

deviation from the precise results, all of the model outputs are within acceptable ranges. 

4) The Gradient Boosting model fared better than the other models analysed in terms of prediction, 

as shown by the k-fold cross-validation test and statistical analysis. 

5) In order to establish how much the input parameters mattered, a sensitivity analysis was 

performed. It was found that the prediction of the outcome depended on the following variables: 

Vf of steel fibre, Fibre length, Fibre diameter, Cement, Silica fume, Water, Sand, Superplasticizer, 

and Coarse Aggregate, respectively. 

6) Without the need for extensive casting and testing, the ensemble machine learning algorithms, 

particularly Gradient Boosting, can accurately estimate the strength properties of concrete. 
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