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Abstract:  Predicting the flexural strength and compressive strength of ultra-high performance 

steel fiber reinforced concrete (UHPFRC) accurately has a significant impact on controlling steel 

fiber volume fraction and optimizing UHPFRC mix proportion. Steel fibers increase the flexural 

strength, compressive strength, and ductility of ultra-high-performance concrete. Two artificial 

neural networks were created in this study to forecast the flexural strength and compressive 

strength of UHPFRC, respectively, in order to assess the impacts of steel fibers on the mechanical 

characteristics of UHPFRC. The flexural strength model and the compressive strength model were 

developed using 102 test data sets and 162 test data sets from the literature, respectively. The 

compressive strength and flexural strength of UHPFRC were the results of these two models, 

which looked at the influential parameters such as the water to binder ratio, the diameter, the 

length, the aspect ratio, and the volume fraction of steel fibres as well as the compressive and 

flexural strengths of concrete without fibres as inputs. The findings demonstrate that the artificial 

neural network models correctly anticipated UHPFRC's compressive and flexural strengths. The 

suggested models were found to have good application and reliability with regard to forecasting 

the compressive strength and the flexural strength of UHPFRC by comparison with current 

analytical models. 
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1 INTRODUCTION  

Compressive strength and flexural strength are two essential mechanic criteria to assess the strength 

and ductility of materials in ultra-high-performance concrete (UHPC) mixture design. UHPC is 

brittle, thus to make it more ductile and stronger, steel fibres with high tensile strength and ultimate 

elongation are always uniformly scattered in UHPC. Ultra-high performance steel fibre reinforced 

concrete, or UHPFRC, is another name for UHPC reinforced with steel fibres. The steel fibres in 

UHPFRC modify the granular skeleton, enhance the cohesive forces between the fibres and the 

matrix, and lengthen the anchoring between the fibres and the surrounding matrix [1,2]. 

Additionally, steel fibres act as a crack filler and slow the spread of cracks to improve the ductility 

and strength of UHPFRC [3]. Unfortunately, using too many steel fibres causes the fibres to 

interlock and interwrap, reducing the workability of UHPFRC and weakening it [4]. Additionally, 

the expense of adding a lot of steel fibres to the UHPFRC is too high since they are costly. In order 

to regulate the volume fraction of steel fibres, optimise mix proportion, and lower UHPFRC costs, it 

is necessary to precisely anticipate the compressive strength and flexural strength of UHPFRC. 

However, because to the complicated composite behaviour brought on by the parameters of steel 
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fibres (diameter (D), length (L), aspect ratio (AR), etc.), assessing the flexural strength and 

compressive strength of the UHPFRC is a significant difficulty. 

 The sustainability contribution of cement-based materials is a current research area [5-8] and it has 

been determined that a number of additions to cement-based materials, such as silica fume, fly ash, 

the water to cement ratio, and others, perform well enough to be used in high performance concrete. 

Due to this aspect, it is also important to take into account their impact on the mechanical 

characteristics of these novel concretes. The compressive strength and flexural strength of UHPFRC 

have been the subject of several experimental and theoretical studies over the past few decades [9–

30]. The compressive strength and flexural strength of UHPFRC have been predicted using a 

number of analytical models that have been developed by making a number of assumptions about 

the process and creating equilibrium equations.  Additionally, based on the experimental research, a 

number of empirical models [31-36], some of which are included in the design codes, have been 

developed to forecast the compressive strength and the flexural strength of UHPFRC. Furthermore, 

the JGJ/T 221 [31] Chinese standard only suggests an empirical methodology to forecast the flexural 

strength of steel fibre reinforced concrete. These models often rely heavily on the diameter, length, 

volume percentage, and compressive/flexural strength of UHPFRC without fibres. The experimental 

data utilised to develop the empirical formula, however, is sparse, with the majority of them 

concentrating solely on the volume percent of steel fibres and ignoring other factors. Thus, the 

prediction accuracy and dependability of such empirical models are evaluated when new test data 

are available. 

 The goal of this project is to create two ANN models to forecast UHPFRC's compressive and 

flexural strengths. The development of models and evaluation of the impacts of steel fibres on the 

compressive strength and flexural strength of UHPFRC, respectively, required the collection of 162 

compressive strength data sets and 102 flexural strength data sets from published literature. To 

assess the suggested models' dependability and predictability, they were compared to a number of 

analytical models. Additionally, the ANN models may be used to optimise the UHPFRC mixes, 

identify the volume percent of steel fibres in UHPFRC, and forecast the flexural strength and 

compressive strength of UHPC. 

2. Artificial Neural Network Approach 

 A machine learning technique known as an artificial neural network (ANN) was developed in an 

effort to replicate the nervous system of a person in order to interpret experimental data by 

classifying, grouping, regressing, and forecasting [43]. One common ANN is the multi-layer feed-

forward perception network, which comprises an input layer, one or more hidden layers, and an 

output layer. The many neurons are dispersed across the layers of this network (see Figure 1). There 

is no connection between neurons in the same layer of the network; instead, all neurons in each layer 

are linked to the one below. By altering the weights and thresholds between layers, the input layer 

and the output layer are converted.  A set of weights will be steady and a positive outcome will be 

attained if the issue can be learned. 

The back propagation neural network, which employs nonlinear training techniques, is one of the 

most fundamental and crucial neural networks for multi-layer feed-forward networks. The back 

propagation network's training procedure is based on supervised learning, which reduces errors 

between estimated and experimental values by periodically modifying the weights by a modest 

amount [40,41]. 

A back propagation network's training procedures are divided into two stages: the forward stage and 

the backward stage. The forward stage uses the supplied starting connection weights and the input 

data to calculate the network outputs. The input data is transferred during the procedure from the 

input layer to the concealed layer. The neurons in the hidden layer then add up the input data in a 

weighted total, apply an activation function to the sum, and then send the results of the activation to 

the output layer. Equation (1) may be used to determine the input data's weighted sum [43–46]. 

 netj= ∑ωijxi+ bj (1) 

 where xi is the output of the ith neuron in the lower layer, bj is the bias of the jth layer in the upper 

layer, netj is the weighted sum of the jth neuron received from the lower layer with n neurons, ij is 
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the weight between the ith neuron in the lower layer and the jth neuron in the upper layer. Sigmoid 

or linear functions are frequently used as the activation function in back propagation networks. 

Equation (2) may be used to represent the Sigmoid function. 

 netj= ∑ωijxi+ bj (2) 

1 

 oj=  (3) 

1 + e−netj 

where ojis the output of the jthneuron in the upper layer. 

 estimated errors between estimated outputs and experimental findings are transmitted back to 

the network in the backward step to change connection weights and bias. Until the mistakes are at a 

level that is acceptable, this procedure is repeated. Equation (4) can be used to summarise the 

weights' adjusted value. 

 oi
I (4) 

where ∆ωijis the nth value of weights adjustment between the ithneuron in the lower layer and the jth 

j iis the neuron in the upper layer, η is the 

training rate, δJis the local gradient of the jthlayer, and oIoutput of the input neurons. 

 Because the LM algorithm combines the benefits of the Quasi-Newton algorithm with the 

Steepest Descent Back-propagation, which is suited for non-linear least square problems and curve 

fitting, it is used in this work as the training approach for the ANN models. 

 

 
sum function, log-sigmoid activation function, and output. 

3. Database and Models 

3.1. Data Collection 

 A trustworthy database was created in order to investigate how steel fibres affect the 

compressive strength and flexural strength of UHPFRC. The literature [9–30] was searched for 162 

group compressive strength experimental data and 102 group flexural strength experimental data 

(Tables 1 and 2). 

Due to a lack of appropriate standards, the specimens used for compressive strength testing 

come in a variety of sizes and forms. In accordance with GB/T 31387 [47], a cube specimen of 100 

x 100 x 100 mm is regarded as the industry standard for data homogeneity. By using the correlation 
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approaches recommended by researchers [48–51], the test specimens were converted to standard 

cube compressive strength, and the resulting equations are as follows. 

 

fcu,100 = 0.959fcu,70.7 (5) 

fc
0 = 0.845fcu,70.7 (6) 

fcu,150 = 0.91fcu,100 + 3.62 (7) 

fcu,150 = fcylin,100×200 + 6.41 (8) 

fcylin,50×100 = 1.07fcylin,100×200 (9) 

where, fcu,70.7 fcu,100, and fcu,150 are the compressive strength of 70.7 mm cube, 100 mm cube, and 

 150 mm cube, respectively; fc0 is the axis compressive strength of UHPFRC; the size effects are 

not readily apparent in fc0. fcylin,50100 and fcylin,100200 are the compressive strengths of 50 100 

mm and 100 200 mm cylinder, respectively. 

 To create the training-testing database, a total of 166 experimental compressive strength data 

sets and 102 experimental flexural strength data sets were acquired. The remaining data sets (20% of 

the total data) were utilised for testing, while 80% of the data (133 and 80) were chosen as training 

sets. To counteract the impact of arbitrary selection on the outcomes, the testing data were chosen at 

random. According to pre-existing calculation models [31–38], the water to binder ratio (W/B), the 

diameter, length, aspect ratio, and volume fraction of steel fibres, as well as the compressive strength 

(PCS) or flexural strength (PFS) of UHPFRC without steel fibres, were chosen as the main input 

parameters, and the compressive strength (CS) or flexural strength (FS) of UHPFRC was used as the 

output variable. The ranges of the input and output variables in the databases for compressive 

strength and flexural strength used in this investigation are displayed in Table 3. 

Table 1. Ranges of Parameters in Compressive Strength and Flexural Strength Data base. 

Variables 
Compressive Strength Flexural Strength 

Minimum Maximum Minimum Maximum 

W/B 0.13 0.30 — — 

D/mm 0.15 0.65 0.16 0.65 

L/mm 6 30 9 30 

AR 100 30 32.5 100 

VF/% 0.00 5.00 0.00 5.00 

PCS/MPa 72.15 220.98 8.23 26.88 

CS/MPa 72.15 249.68 8.23 73.67 

3.2. Proposed ANN Model 

 Three layers make up the ANN models suggested in this paper: an input layer, a hidden layer, and 

an output layer (see Figure 1). The specifications of the research questions define the number of 

input and output nodes. The initial number of hidden layer nodes should be determined through 

experiments, though, as there aren't any solid mathematical procedures for computing this amount. 

In the hidden layer, the linear activation function is utilised, and in the output layer, the log-sigmoid 

activation function. 

A series of tests were conducted to establish the number of layers and other parameters of the ANN 

models by the least mean square error (MSE) of the training data in order to construct the ANN 

model for forecasting the flexural strength and compressive strength of UHPFRC. The flexural 

strength (FS) of UHPFRC is investigated as an output, while the length (L), diameter (D), aspect 

ratio (AR), volume fraction (VF), and steel fibre volume fraction are investigated as inputs. 

Additionally, the water to binder ratio (W/B) and compressive strength (PCS) of UHPFRC without 

fibres are investigated. The characteristics of the ANN models used to forecast the compressive and 

flexural strengths of UHPFRC are provided in Table 4 along with the models' structures in Figure 2. 

Table 2. Parameters used in the ANN models. 
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Parameters Flexural Strength 

Model 

Compressive Strength 

Model 

Number of input layer nodes 5 6 

Number of hidden layers 1 1 

Number of hidden layer nodes 15 20 

Number of output layer nodes 1 1 

Momentum factor 0.8 0.6 

Learning rate 0.3 0.3 

Target error 0.00001 0.00001 

Learning cycle 10,000 10,000 

 
Figure 2. Structure of ANN models, (a) Compressive strength ANN model, (b) Flexural 

strength 

ANN model; W/B (water to binder ratio); PCS (compressive strength of UHPFRC without 

fibers); 

VF (volume fractions); AR (aspect ratio); PFS (flexural strength of UHPFRC without 

fibers); CS 

(Compressive strength of UHPFRC); FS (flexural strength of UHPFRC). In (a), the 

compressive strength ANN model developed in this study has three layers with six neurons 

in input layer, twenty neurons in hidden layer and one neural in output layer; in (b), the 

compressive strength ANN model that was developed in this study has three layers with five 

neurons in input layer, fifteen neurons in hidden layer, and one neural in output layer. In 

these two figures, ωijis the weight between the ithneuron in the input layer and the jthneuron 

in the hidden layer, ωjiis the weight between the ithneuron in the hidden layer and the 

jthneuron in the output layer, and bjis the bias of the jthlayer in the output layer. 

3.3. Processing Data 

 The gathered data used to create ANN models should be normalised within the predetermined 

bounds to remove non-singular data, increase the accuracy of findings, speed up convergence, and 

shorten computation times. Linear or logarithmic functions make up the majority ofnormalisation 

expressions [43]. In this study, the data were normalised using a sample function, as shown in 

Equation (10). 

 Xi,norm= 0.1 + 0.8 × (Xi − Xmin)/(Xmax− Xmin) (10) 

where Xi,normis normalized data and Xmaxand Xminare the maximum and minimum value of data, 

respectively. An inverse normalized process is applied to the output layer to get the test data. 

4. Results and Discussion 

4.1. Results Assessment Criteria 

 In addition to the input data used in the training process, a correctly trained ANN model should 

provide an accurate output prediction for fresh testing data outside the training database. In this 

work, five indicators were used to assess the performance of the flexural strength ANN model and 
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six indications were used to assess the performance of the compressive strength ANN model. These 

three metrics, which are determined by Equations (11) through (13), are the root mean square error 

(RMS), absolute fraction of variance (R2), and integral absolute error (IAE), respectively [38,45]. 

The suggested models are said to properly predict the experimental data when the RMS and IAE 

tend to zero and the R2 tends to one. 

4.2. Results Evaluation 

4.2.1. Predicting Model for Compressive Strength 

 The compressive strength ANN model created in this work was used to assess how steel fibres 

affected UHPFRC's compressive strength. Figure 3 displays comparisons between the experimental 

and predicted values for the training and test sets of the compressive strength ANN model. It was 

clear that the ANN model's projected values from the training and testing data were rather close to 

the goal values. By virtue of this phenomena, it was shown that the ANN model was capable of 

understanding the nonlinear relationship between the input and output variables. As a result, the 

ANN model had the capacity to predict how steel fibres would affect UHPFRC's compressive 

strength. 

 

 
Figure 3. Comparison of predicted values from compressive strength ANN model with 

experimental results: (a) Training data, (b) Testing data. The figures show that the 

comparison between the target values and predicted values of testing and training data 

from experiments and compressive strength ANN model, the horizontal axis denotes 

number of training or testing data, and the vertical axis denotes the compressive strength. 

It was obvious that the predicted values accord with the target values. 

Table 3. The indicators of training and testing of Compressive strength ANN model. 

Indicators Training Testing 

RMS 0.0876 0.0980 

R2 0.9923 0.9901 

IAE 0.0005 0.0019 

4.2.2. Prediction Model for Flexural Strength 

 The flexural resistance The ANN model used in this work was used to forecast the UHPFRC's 

flexural strength. Figure 4 displays comparisons between the anticipated and experimental values for 

the ANN model's training and testing data. It was clear that the ANN model's projected values from 

the training and testing data were rather close to the desired values. By virtue of this phenomena, it 

was shown that the ANN model was capable of understanding the nonlinear relationship between 

the input and output variables. As a result, the ANN model had the capacity to predict how steel 

fibres would affect UHPFRC's flexural strength. 
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Figure 4. Comparison of predicted values from flexural strength ANN model with 

experimental results: (a) Training data, (b) Testing data. The figures showed that the 

comparison between the target values and predicted values of testing and training data 

from experiments and flexural strength ANN model, the horizontal axis denotes number of 

training or testing data and the vertical axis denotes the flexural strength. It was obvious 

that the predicted values accord with the target values. 

 RMS, R2, and IAE were presented in Table as the flexural strength ANN model's performance 

metrics for training and testing data. The metrics in Table 4 demonstrate that the suggested 

methodology delivered positive outcomes. As a result, the flexural strength of the ANN model 

examined in this work had excellent accuracy and was appropriate for assessing how steel fibres 

affected UHPFRC's flexural strength. 

Table 4. The indicators of Training and Testing of Flexural strength ANN model. 

Indicators Training Testing 

RMS 0.1492 0.0376 

R2 0.9777 0.9986 

IAE 0.0011 0.0004 

4.3. Comparison with Other Models 

4.3.1. Compressive Strength Models 

 The findings from the compressive strength ANN model were compared with the values that 

were estimated by current models and given in the literature to evaluate the dependability of the 

suggested model [34–36]. The models for forecasting the compressive strength of steel fibre 

reinforced concrete (SFRC) are compiled in Table 7 since there are few models for predicting the 

compressive strength of UHPFRC. These models use the Nataraja model to predict the compressive 

strength (30–50 MPa) of SFRC, the Ezeldin model to predict the compressive strength (35–85 

MPa), the VF ranges from 30 kg/m3 to 60 kg/m3, and the AR are 60, 75, and 100; Yuchen 

Qu  model is applied to predict the compressive strength (30–50 MPa) of SFRC, the VF ranges from 

0 to 3.4%, and the AR are from 50 to 100. 

Table 5. Analytical models for predicting the compressive strength of steel fiber reinforced 

concrete (SFRC). 

Analytical Model Compressive Strength 

Nataraja [34] fcf= fc + 2.1604(RIw) 

Ezeldin [35] fcf= fc + 3.51(RIw) 

Yuchen Qu [36] fcf= fc + 2.35(RIv) 

Where fcfand fc are the compressive strength of SFRC and plain concrete, respectively; RIwand 

RIvare the reinforcing indexes of steel fibers weight fraction and steel fibers volume fraction, 
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respectively, RIwis around 3.25 times of RIv, RIw= wf× lf/df,wfis the weight fraction of steel fibers, lfis 

the length of steel fibers, and the dfis the diameter of steel fibers. 

 Based on the data gathered, the analytical methods previously stated were used to determine 

the compressive strength of UHPFRC. The compressive strength ANN model from this work and 

the analytical models from prior studies are shown in Table 8 along with their respective means, 

standard deviations (SD), and IAE. In Table 9, the SD and the IAE were within the ranges of 

0.1191-0.1268 and 1.03-1.34%, respectively, while the mean values for the analytical models ranged 

from 0.8830 to 0.9454, being less than one. The SD and IAE were relatively low, and the mean 

values from the ANN model in this investigation were quite near to one. Figure 5 shows that the 

anticipated values derived from the analytical models of earlier studies may undervalue the very 

variable experimental outcomes. The Nataraja model, Ezeldin model, and Yuchen Qu model all 

produced ranges of anticipated outcomes compared to experimental data that were 45-15%, 40-30%, 

and 50-10%, respectively. While the ANN model's range of projected outcomes in comparison to 

experimental findings is between 15 and 15%. The ANN model presented in this work could predict 

the behaviours of UHPFRC extremely well when compared to analytical methods for predicting the 

compressive strength of UHPFRC. As a result, the compressive strength ANN model's predictions 

have a high degree of accuracy and stability when used to assess how steel fibres affect the 

compressive strength of UHPFRC. 

Table 6. The Mean value, standard deviation (SD), and integral absolute error (IAE) of ANN 

model and analytical models. 

Models Mean SD IAE 

ANN model 1.0050 0.0896 0.70% 

Nataraja model 0.9152 0.1191 1.13% 

Ezeldin model 0.9454 0.1216 1.03% 

Yuchen Qu model 0.8830 0.1268 1.34% 

Table 9. Analytical models for predicting the Flexural strength of SFRC. 

Analytical Model Flexural Strength 

JGJ/T 221 [31] ff f = ff (1 + 1.25Vf lf/df) 

Swamy [32] ff f = 0.97ff (1 − Vf)+ 3.41Vf lf/df 

Won-Kya Chai [33] ff f = ff + 0.103Vf lf/df 

(a)  
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Figure 5. Comparison between predicted values and experimental values from three 

analytical models (proposed by Nataraja, Ezeldin, and Yuchen Qu) in previous studies and 

the ANN model studied in this paper. The 45 degree diagonal line (red line) denotes the 

predicted values equal to the experimental values and the black lines denote that the 

maximum ranges between predicted results and experimental results. 

4.3.2. Flexural Strength Models 

 The findings from the flexural strength ANN model were compared with the values that were 

computed by current models given in the literature [31–33] in order to investigate the validity of the 

proposed model. The models for forecasting the flexural strength of steel fibre reinforced concrete 

(SFRC) are compiled in Table 9 as there are few models for predicting the flexural strength of 

UHPFRC. 

Where ff f and ff are the flexural strength of steel fiber reinforced concrete and plain concrete, 

respectively; Vfis the volume fraction of steel fibers, lfis the length of steel fibers, and the dfis the 

diameter of steel fibers. 

 Based on the data gathered, the analytical models previously stated were used to determine the 

flexural strength of UHPFRC. For the analytical models of earlier research and the flexural strength 

ANN model used in this investigation, Table 10 shows the mean value, standard deviation (SD), and 

IAE of fpredicted/fexperimental. In Table 10, the SD and IAE were within the ranges of 0.2055-

0.4431 and 3.03-4.04%, respectively, while the mean values for the analytical models varied from 

0.8429 to 1.1458. The SD and IAE were relatively low, and the mean values from the ANN model in 

this investigation were pretty near to one. Figure 6 shows that the anticipated values derived from 

the analytical models of earlier studies may significantly underestimate the very variable 

experimental outcomes. The JGJ/T 221 model, Swamy model, and Won-Kya Chai model have 

prediction ranges of 35-180%, 50-30%, and 35-150%, respectively, based on experimental data. 

While the ANN model's range of projected outcomes in comparison to experimental findings is 

between 15 and 15%. The ANN model suggested in this work could predict the flexural behaviour 

of UHPFRC extremely well when compared to the analytical models of flexural strength for 

UHPFRC. In order to assess the impacts of steel fibres on the flexural strength of UHPFRC, the 

predictions of the flexural strength ANN model are therefore very accurate and stable. 

Table 10. The Mean value, SD, and IAE of ANN model and analytical models. 

Models Mean SD IAE 

ANN model 0.9915 0.1509 1.50% 

JGJ/T 221 model 1.2807 0.4431 4.04% 

Swamy model 0.8429 0.2055 3.03% 

Won-Kya Chai model 1.1458 0.3547 3.30% 
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Figure 6. Comparison between predicted values and experimental values from three 

analytical models (proposed by JGJ/T 221, Swamy, Won-Kya Chai) in previous studies 

and the ANN model studied in this paper. The 45-degree diagonal line (red line) denotes 

the predicted values equal to the experimental values and the black lines denote that the 

maximum ranges between predicted results and experimental results. 

5. Conclusions 

 In this study, the compressive and flexural strengths of UHPFRC were assessed using the ANN 

approach. 166 compressive strength data sets and 102 flexural strength data sets from prior research 

were used to create two reliable databases. Out of these, 133 and 80 samples were randomly selected 

for training and the remaining samples were used for testing to create the compressive strength ANN 

model and the flexural strength ANN model, respectively. Following were the conclusions: 

(1)  The compressive strength ANN model was trained by using the LM algorithm, with twenty 

neurons in hidden layers, revealing great prediction performance. The predicted values were 

fairly close to the experimental results for both the training and testing data sets in the 

proposed model. 

(2) The flexural strength ANN model was trained by using the LM algorithm, with twenty neurons 

in hidden layers, revealing great prediction performance. The predicted values were fairly close 

to the experimental results for both the training and testing data sets in the proposed model. 

(3) Three analytical models suggested in prior works were compared with the outcomes of the 

compressive strength ANN model. The comparison showed that, in contrast to the projected 

values from the ANN model in this work, which accord with the experimental values, the 

analytical models suggested by others may understate the compressive strength by around 10% 

on average.  

(4) Three analytical models that were suggested in prior research were compared to the outcomes 

of the flexural strength ANN model. The comparison showed that, whereas the average values 
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of the analytical models put out by others may range from 0.8429 to 1.1458, those in this 

study's ANN model accord with the experimental results. 

(5) The ANN models put out in this work offer a wide range of applicability and dependability 

when it comes to assessing how steel fibres affect the compressive strength and flexural 

strength of UHPFRC. 
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