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Abstract 

Sessa [13], initiated the tradition of improving 

commutativity conditions in metrical common 

fixed point theorems. While doing so Sessa [13] 

introduced the notion of weak commutativity. 

Motivated by Sessa [13], Jungck [10] defined the 

concept of compatibility of two mappings, which 

includes weakly commuting mappings as a proper 

subclass. Jungck and Rhoades [11] introduced the 

notion of weakly compatible mappings, which is 

weaker than compatibility. In this paper, by using 

notions of compatibility, weak compatibility and 

commutativity, we prove some common fixed point 

theorems for six mappings involving rational 

contractive condition in complete cone metric 

spaces. Our work generalizes some earlier results 

of  Goyal([3], [4]),Jeong-Rhoades [8], and 

others. 
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1 INTRODUCTION: 

Huang and Zhang [6] generalized the concept of a 

cone metric space, re-placing the set of real 

numbers by an ordered Banach space and obtained 

some common fixed point  theorems for mappings 

satisfying different contractive conditions over 

cone metric space. Subsequently, Abbas and 

Jungck [1] and Abbas and Rhoades[2] studied 

common fixed point theorems in cone metric 

spaces. Moreover, Huang and Zhang [6], Abbas 

and Jungck[1], IIlic and Rakocevic [7] proved 

their results for normal cones. Jungck [10] 

generalized the concept of weak commuting by 

defining the term compatible mappings and 

proved that the weakly commuting mappings are 

compatible but the converse is not true. Jungck 

and Rhoades [11] defined a pair of self-mappings 

to be weakly compatible if they commute at their 

coincidence points. In recent years, several 

authors have obtained coincidence point results 

for various classes of mappings on a metric space 

utilizing these concepts. In this paper, by using 

notions of compatibility, weak compatibility and 

commutativity, we prove some common fixed 

point theorems for six mappings involving rational 

contractive condition in complete cone metric 

spaces. Our work generalizes some earlier results 

of  Goyal([3], [4]),Jeong-Rhoades [3], and others. 

 

Some examples are also furnished to demonstrate 

the validity of the hypothesis. 

 

2. BASIC DEFINITIONS: 

The following definitions are in literature of 

Huang and Zhang [6]. 

Definition 2.1: Let 𝐸 be a real Banach space and 

𝑃 be a subset of 𝐸. The subset 𝑃 is called a cone if 

and onlyif 

(a) 𝑃 is closed, non-empty and 𝑃 ≠ {0} 

(b) 𝑎, 𝑏 ∈ 𝑅, 𝑎, 𝑏 ≥ 0, 𝑥, 𝑦 ∈ 𝑃 implies  

𝑎𝑥 + 𝑏𝑦 ∈ 𝑃 

(c) 𝑥 ∈ 𝑃 and  −𝑥 ∈ 𝑃 ⇒ 𝑥 = 0 

i.e 𝑃 ∩ (−𝑃) = {0} 

 

Definition 2.2: Let 𝑃 be a cone in a Banach space 

𝐸i.e. given a cone 𝑃 ⊂ 𝐸, define partial ordering 

‘≤’ with respect to 𝑃 by 𝑥 ≤ 𝑦 if and only if 𝑦 −
𝑥 ∈ 𝑃. We shall write 𝑥 < 𝑦 to indicate 𝑥 ≤ 𝑦 but 

𝑥 ≠ 𝑦while 𝑥 ≪ 𝑦 will stand for 𝑦 − 𝑥 ∈ 𝐼𝑛𝑡 𝑃, 

where 𝐼𝑛𝑡 𝑃 denote the interior of the set 𝑃. This 

cone 𝑃 is called an order cone. 

 

Definition 2.3: Let 𝐸 be a real Banach space and 

𝑃 ⊂ 𝐸 be an order cone. The cone 𝑃 is called 

normal if there is a number 𝐾 > 0 such that for all 

𝑥, 𝑦 ∈ 𝐸, 

0 ≤ 𝑥 ≤ 𝑦 implies ‖𝑥‖ ≤ 𝐾‖𝑦‖  … (1) 
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The least positive number 𝐾 satisfying the above 

inequality is called the normal constant of 𝑃. 

 

Definition 2.4: Let 𝑋 be a non-empty and 𝐸 be a 

real Banach space. Suppose that the mapping 

𝑑: 𝑋 × 𝑋 → 𝐸satisfies 

(d1) 0 ≤ 𝑑(𝑥, 𝑦) for all 𝑥, 𝑦 ∈ 𝑋 and 𝑑(𝑥, 𝑦) = 0 

if and only if 𝑥 = 𝑦 

(d2) 𝑑(𝑥, 𝑦) = 𝑑(𝑦, 𝑥) for all 𝑥, 𝑦 ∈ 𝑋 

(d3) 𝑑(𝑥, 𝑦) ≤ 𝑑(𝑥, 𝑧) + 𝑑(𝑧, 𝑦) for all 𝑥, 𝑦, 𝑧 ∈ 𝑋 

 

Then 𝑑 is called a cone metric on 𝑋 and (𝑋, 𝑑) is 

called a cone metric space. 

It is obvious that cone metric spaces generalize 

metric spaces because each metric space is a cone 

metric space with 𝐸 = 𝑅 and 𝑃 = [0, +∞[ 
 

Example 2.5: (a) Let 𝐸 = 𝑅2, 𝑃 = {(𝑥, 𝑦) ∈
𝐸 |𝑥, 𝑦 ≥ 0} ⊂ 𝑅2, 𝑋 = 𝑅 and 𝑑: 𝑋 × 𝑋 → 𝐸 such 

that 

𝑑(𝑥, 𝑦) = (|𝑥 − 𝑦|, 𝛼|𝑥 − 𝑦|), where 𝛼 ≥ 0 is a 

constant.  

 

Then (𝑋, 𝑑) is a cone metric space. 

(b) Let 𝐸 = 𝑅𝑛 with 𝑃 = {(𝑥𝑖, … , 𝑥𝑛): 𝑥𝑖 ≥
0, ∀𝑖 = 1,2, … , 𝑛}𝑋 = 𝑅 and 𝑑: 𝑋 × 𝑋 → 𝐸 such 

that 

𝑑(𝑥, 𝑦) = (|𝑥 − 𝑦|, 𝛼𝑖|𝑥 − 𝑦|, … , 𝛼𝑛−1|𝑥 − 𝑦|) 

where 𝛼𝑖 ≥ 0 for all 1 ≤ 𝑖 ≤ 𝑛 − 1. Then (𝑋, 𝑑) 

is a cone metric space. 

 

Definition 2.6: Let (𝑋, 𝑑) be a cone metric space. 

Let {𝑥𝑛} be a sequence in 𝑋 and 𝑥 ∈ 𝑋. We say 

that {𝑥𝑛}is a 

(a) convergent sequence or {𝑥𝑛} converges to 𝑥 

if for every 𝑐 in 𝐸 with 𝑐 ≫ 0, there is an 

𝑛0 ∈ 𝑁 such that for all 𝑛 > 𝑛0, 𝑑(𝑥𝑛, 𝑥) ≪
𝑐 for some fixed point 𝑥 in 𝑋 where 𝑥 is that 

limit of {𝑥𝑛}. This is denoted by lim
𝑛→∞

𝑥𝑛 = 𝑥 

or 𝑥𝑛 → 𝑥, 𝑛 → ∞. Completeness is defined 

in the standard way. 

It was proved in [5] if (𝑋, 𝑑) be a cone metric 

space, 𝑃 be a normal cone with normal constant 𝐾 

and {𝑥𝑛} converges to 𝑥 if and only if 𝑑(𝑥𝑛, 𝑥) →
0 as 𝑛 → ∞. 

 

(b) Cauchy sequence if for 𝑐 in 𝐸 with 𝑐 ≫ 0, 

there is an 𝑛0 ∈ 𝑁 such that for all 𝑛, 𝑚 >
𝑛0, 𝑑(𝑥𝑛, 𝑥𝑚) ≪ 𝑐. 

It was proved in [5] if (𝑋, 𝑑) be a cone metric 

space, 𝑃 be a normal cone with normal constant 𝐾 

and {𝑥𝑛} be a sequence in 𝑋, then {𝑥𝑛} is a 

Cauchy sequnence  if and only if 𝑑(𝑥𝑛, 𝑥𝑚) → 0 

as 𝑛, 𝑚 → ∞. 

 

Definition2.7: A cone metric space 𝑋 is said to be 

complete if every Cauchy sequence in 𝑋 is 

convergent in 𝑋. It is known that {𝑥𝑛} converges 

to 𝑥 ∈ 𝑋 if and only if 𝑑(𝑥𝑛, 𝑥) → 0 as 𝑛 → ∞. 

The limit of a convergent sequence in unique 

provided 𝑃 is a normal cone with normal constant 

𝐾. 

 

 In recent years several definitions of conditions 

weaker than commutativity have appeared which 

facilitated significantly to extend the Jungck’s 

[10] theorem and several others. Foremost among 

of them is perhaps the weak commutativity 

condition introduced by Sessa [13] which can be 

described as follows: 

 

Definition 2.8: Let 𝑆 and 𝑇 be mappings from a 

cone metric space (𝑋, 𝑑) into itself. Then 𝑆 and 𝑇 

are said to be weakly commuting mappings on 𝑋 

if  

𝑑(𝑆𝑇𝑥, 𝑇𝑆𝑥) ≤ 𝑑(𝑆𝑥, 𝑇𝑥), for all 𝑥 ∈ 𝑋. 

obviously a commuting pair is weakly commuting 

but its converse need not be true as is evident from 

the following example. 

 

Example 2.9: Consider the set 𝑋 = [0,1] with the 

usual metric defined by 

𝑑(𝑥, 𝑦) = |𝑥 − 𝑦| = ‖𝑥 − 𝑦‖ 

 

Define 𝑆 and 𝑇: 𝑋 → 𝑋 by 

𝑆𝑥 =
𝑥

3−2𝑥
 and 𝑇𝑥 =

𝑥

3
 for all 𝑥 ∈ 𝑋. 

 

Then, we have to any 𝑥 in 𝑋 

𝑆𝑇𝑥 =
𝑥

9−2𝑥
 and 𝑇𝑆𝑥 =

𝑥

9−6𝑥
 

 

Hence 𝑆𝑇 ≠ 𝑇𝑆. Thus, 𝑆 and 𝑇 do not commute. 

Again,  𝑑(𝑆𝑇𝑥, 𝑇𝑆𝑥) = ‖
𝑥

9−2𝑥
−

𝑥

9−6𝑥
‖ 

  =
4𝑥2

(9−2𝑥)(9−6𝑥)
 

 ≤
2𝑥2

3(3−2𝑥)
=

𝑥

3−2𝑥
−

𝑥

3
 

 = 𝑑(𝑆𝑥, 𝑇𝑥) 

and thus 𝑆 and 𝑇 commute weakly. 

 

Example2.10: Consider the set 𝑋 = [0,1] with the 

usual metric 𝑑(𝑥, 𝑦) = ‖𝑥 − 𝑦‖. Let 𝑆𝑥 =
𝑥

2
 and 

𝑇𝑥 =
𝑥

2+𝑥
 , for every 𝑥 ∈ 𝑋. Then, for all 𝑥 ∈ 𝑋 

𝑆𝑇𝑥 =
𝑥

4+2𝑥
 and 𝑇𝑆𝑥 =

𝑥

4+𝑥
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Hence, 𝑆𝑇 ≠ 𝑇𝑆. Thus, 𝑆 and 𝑇 do not commute. 

Again,  𝑑(𝑆𝑇𝑥, 𝑇𝑆𝑥) = ‖
𝑥

4+2𝑥
−

𝑥

4+𝑥
‖ 

  =
𝑥2

(4+𝑥)(4+2𝑥)
 

 ≤
𝑥2

4+2𝑥
=

𝑥

2
−

𝑥

2+𝑥
 

 = 𝑑(𝑆𝑥, 𝑇𝑥) 

and thus, 𝑆 and 𝑇 commute weakly. 

 

Obviously, the class of weakly commuting is 

wider and includes commuting mappings as 

subclass. 

 

Jungck [10] has observed that for X = R if Sx = x3 

and Tx = 2x3 then S and T are not weakly 

commuting. Thus it is desirable to a less 

restrictive concept which he termed as 

‘compatibility’ the class of compatible mappings 

is still wider and includes weakly commuting 

mappings as subclass as is evident from the 

following definition of Jungck[10]. 

 

Definition2.11: Let 𝑆 and 𝑇 be self mappings on a 

cone metric space (𝑋, 𝑑). Then 𝑆 and 𝑇 are said to 

be compatible mappings on 𝑋 if 

lim
𝑛→∞

𝑑(𝑆𝑇𝑥𝑛, 𝑇𝑆𝑥𝑛) = 0 whenever {𝑥𝑛} is a 

sequence in 𝑋 such that 

lim
𝑛→∞

𝑆𝑥𝑛 = lim
𝑛→∞

𝑇𝑥𝑛 = 𝑡 for some point 𝑡 ∈ 𝑋. 

 

Obviously, any weakly commuting pair {𝑆, 𝑇}  is 

compatible, but the converse is not necessarily 

true, as in the following example. 

 

Example2.12: Let Sx = x3 and Tx = 2x3 with X = R 

with the usual metric. Then S and T are 

compatible, since |𝑇𝑥 − 𝑆𝑥| = |𝑥3| → 0  if and 

only if  |𝑆𝑇𝑥 − 𝑇𝑆𝑥| = 6|𝑥9| → 0 But |𝑆𝑇𝑥 −
𝑇𝑆𝑥| ≤ |𝑇𝑥 − 𝑆𝑥| is not true for all Xx , say 

for example at x = 1. 

 

Definition 2.13: Let 𝑆 and 𝑇 be self maps of a set 

𝑋. If 𝑤 = 𝑆𝑥 = 𝑇𝑥 for some 𝑥 in 𝑋, then 𝑥 is 

called a coincidence point of 𝑆 and 𝑇 and 𝑤 is 

called a point o coincidence of 𝑆 and 𝑇. 

 

Definition2.14:A pair of self mappings (𝑆, 𝑇) on 

a cone metric space (𝑋, 𝑑) is said to be weakly 

compatible if the mappings commute at their 

coincidence points i.e 𝑆𝑥 = 𝑇𝑥 for some 𝑥 ∈ 𝑋 

implies that 𝑆𝑇𝑥 = 𝑇𝑆𝑥. 

 

Example2.15: Let X = [2, 20] with usual metric define 








=









−

+

=

=
528

]20,5(}2{2

2053

5212

22

xif

xif
Sxand

xifx

xifx

xif

Tx  

S and T are weakly compatible mappings which is not compatible. 

 

Remark 2.16: Let (𝑋, 𝑑) be a cone metric space 

with a cone 𝑃. If 𝑑(𝑥, 𝑦) ≤ ℎ𝑑(𝑥, 𝑦) for all 𝑥, 𝑦 ∈
𝑋, ℎ ∈ (0,1), then 𝑑(𝑥, 𝑦) = 0, which implies that 

𝑥 = 𝑦. 

 

3MAIN RESULTS:- 

Let𝑅+ be the set of non-negative real numbers and 

let𝐹: 𝑅+ → 𝑅+ be a mapping such that𝐹(0) = 0 

and 𝐹 is continuous at 0. 

 

The following Lemma is the key in proving our 

result. Its proof is similar to that of Jungck [9]  

 

Lemma3.1:Let{𝑦𝑛}be a sequence in a 

completemetric space(𝑋, 𝑑). If there exists a 𝑘 ∈
(0,1)such that 

‖𝑑(𝑦𝑛+1, 𝑦𝑛)‖ ≤ 𝑘‖𝑑(𝑦𝑛+1, 𝑦𝑛)‖ 

for all𝑛, then {𝑦𝑛} converges to a point in 𝑋. 

 

Motivated by the contractive condition given by 

contractive conditipn of Slobodan C. Nesic [12], 

Jeong  and Rhoades [8] we prove the following 

theorem. 

 

Theorem3.2:Let (𝑋, 𝑑) be a cone metric space 

and 𝑃 a normal cone with  normal constant 𝐾. 

Suppose mappings 𝐴, 𝐵, 𝑆, 𝑇, 𝐼, 𝐽: 𝑋 → 𝑋satisfying 

𝐴𝐵(𝑋) ⊂ 𝐽(𝑋), 𝑆𝑇(𝑋) ⊂ 𝐼(𝑋)and  for each𝑥, 𝑦 ∈
𝑋 either, 
𝑑(𝐴𝐵𝑥, 𝑆𝑇𝑦)

≤ 𝛼1 [
𝑑(𝐴𝐵𝑥, 𝐽𝑦). 𝑑(𝐽𝑦, 𝑆𝑇𝑦) + 𝑑(𝑆𝑇𝑦, 𝐼𝑥)𝑑(𝐼𝑥, 𝐴𝐵𝑥)

𝑑(𝐴𝐵𝑥, 𝐽𝑦) + 𝑑(𝑆𝑇𝑦, 𝐼𝑥)
] 

+𝛼2[𝑑(𝐴𝐵𝑥, 𝐽𝑦) + 𝑑(𝐽𝑦, 𝑆𝑇𝑦)] + 𝛼3𝑑(𝐼𝑥, 𝐴𝐵𝑥) 

+𝐹(𝑑(𝑆𝑇𝑦, 𝐼𝑥). 𝑑(𝐼𝑥, 𝐴𝐵𝑥)) ....(2) 

 

If𝑑(𝐴𝐵𝑥, 𝐽𝑦) + 𝑑(𝑆𝑇𝑦, 𝐼𝑥) ≠ 0, 𝛼𝑖 ≥ 0 (𝑖 =
1,2,3, … )with at least one 𝛼𝑖 non zero and𝛼1 +
2𝛼2 + 𝛼1 ≤ 1, 
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𝑑(𝐴𝐵𝑥, 𝑆𝑇𝑦) = 0 if 𝑑(𝐴𝐵𝑥, 𝐽𝑦) + 𝑑(𝑆𝑇𝑦, 𝐼𝑥) = 0 … (3) 

if either 

(a)  (𝐴𝐵, 𝐼)are compatible, I or AB is continuous 

and(𝑆𝑇, 𝐽) are weakly compatible or(𝑎′)(𝑆𝑇, 𝐽) are 

compatible, J or ST is continuous then𝐴𝐵, 𝑆𝑇, 𝐼 

and 𝐽 have a unique common fixed point. 

Furthermore if the pairs(𝐴, 𝐵), (𝐴, 𝐼),
(𝐵, 𝐼), 𝑆, 𝑇), (𝑆, 𝐽) and (𝑇, 𝐽) are commuting 

mappings then𝐴, 𝐵, 𝑆, 𝑇, 𝐼 and 𝐽 have a unique 

common fixed point. 

 

Proof :  

We construct a sequence as follows. Let𝑥0 be an 

arbitrary point in 𝑋. Since𝐴𝐵(𝑋) ⊆ 𝐽(𝑋) we can 

choose a point𝑥1 in 𝑋 such that𝐴𝐵𝑥0 = 𝐽𝑥1. 

Again since𝑆𝑇(𝑋) ⊆ 𝐼(𝑋) we can choose a 

point𝑥2 in 𝑋 such that𝑆𝑇𝑥1 = 𝐼𝑥2, construct a 

sequence{𝑧𝑛}be repeatedly using this argument, 

𝑥2𝑛 = 𝐴𝐵𝑥2𝑛 = 𝐽𝑥2𝑛+1, 𝑧2𝑛+1 = 𝑆𝑇𝑥2𝑛+1 =
𝐼𝑥2𝑛+2, 𝑛 = 0,1,2, … 

Let us put 𝑈2𝑛 = 𝑑(𝐴𝐵𝑥2𝑛, 𝑆𝑇𝑥2𝑛+1) and 

𝑈2𝑛+1 = 𝑑(𝑆𝑇𝑥2𝑛+1, 𝐴𝐵𝑥2𝑛+2) for 𝑛 =
0,1,2, …Now we distinguish two cases : 

Case – 1 : 

Suppose that 𝑈2𝑛 + 𝑈2𝑛+1 ≠ 0 for 𝑛 = 0,1,2, … then on using inequality (2), we have 

𝑈2𝑛+1 = 𝑑(𝑧2𝑛+1, 𝑧2𝑛+2) = 𝑑(𝑆𝑇𝑥2𝑛+1, 𝐴𝐵𝑥2𝑛+2) 

 

≤ 𝛼1 [
𝑑(𝐴𝐵𝑥2𝑛+2, 𝐽𝑥2𝑛+1). 𝑑(𝐽𝑥2𝑛+1, 𝑆𝑇𝑥2𝑛+1) + 𝑑(𝑆𝑇𝑥2𝑛+1, 𝐼𝑥2𝑛+2). 𝑑(𝐼𝑥2𝑛+2, 𝐴𝐵𝑥2𝑛+2)

𝑑(𝐴𝐵𝑥2𝑛+2, 𝐽𝑥2𝑛+1) + 𝑑(𝑆𝑇𝑥2𝑛+1, 𝐼𝑥2𝑛+2)
] 

 

+𝛼2[𝑑(𝐴𝐵𝑥2𝑛+2, 𝐽𝑥2𝑛+2) + 𝑑(𝐽𝑥2𝑛+1, 𝑆𝑇𝑥2𝑛+1)]+𝛼3𝑑(𝐼𝑥2𝑛+2, 𝐽𝑥2𝑛+1) 

 

+𝐹(𝑑(𝑆𝑇𝑥2𝑛+1, 𝐼𝑥2𝑛+2). 𝑑(𝐼𝑥2𝑛+2, 𝐴𝐵𝑥2𝑛+2)) 

 

≤ 𝛼1 [
𝑑(𝑧2𝑛+2, 𝑧2𝑛). 𝑑(𝑧2𝑛, 𝑧2𝑛+1) + 𝑑(𝑧2𝑛+1, 𝑧2𝑛+1). 𝑑(𝑧2𝑛, 𝑧2𝑛+2)

𝑑(𝑧2𝑛+2, 𝑧2𝑛) + 𝑑(𝑧2𝑛, 𝑧2𝑛+1)
] 

 

+𝛼2[𝑑(𝑧2𝑛+2, 𝑧2𝑛+1) + 𝑑(𝑧2𝑛, 𝑧2𝑛+1)]+𝛼3𝑑(𝑧2𝑛+1, 𝑧2𝑛) 

 

+𝐹(𝑑(𝑧2𝑛+1, 𝑧2𝑛+1). 𝑑(𝑧2𝑛+1, 𝑧2𝑛+2)) 

 

= 𝛼1𝑑(𝑧2𝑛, 𝑧2𝑛+1) + +𝛼3𝑑(𝑧2𝑛+2, 𝑧2𝑛+1)+𝛼2𝑑(𝑧2𝑛, 𝑧2𝑛+1)+𝛼3𝑑(𝑧2𝑛+1, 𝑧2𝑛) + 𝐹(0) 

 

which implies that 

𝑑(𝑧2𝑛+1, 𝑧2𝑛+2) ≤
𝛼1 + 𝛼2 + 𝛼3

(1 − 𝛼2)
𝑑(𝑧2𝑛, 𝑧2𝑛+1) ≤ 𝑘𝑑(𝑧2𝑛, 𝑧2𝑛+1) 

 

where, 𝑡 =
𝛼1+𝛼2+𝛼3

(1−𝛼2)
< 1 

 

Similarly we can conclude that 

𝑑(𝑧2𝑛, 𝑧2𝑛+1) ≤ 𝑡𝑑(𝑧2𝑛−1, 𝑧2𝑛) 

 

Thus for every n, we have 

  𝑑(𝑧𝑛, 𝑧𝑛+1) ≤ 𝑡𝑑(𝑧𝑛−1, 𝑧𝑛) ... (4) 

 

Therefore, by (1) we have, 
‖𝑑(𝑧𝑛, 𝑧𝑛+1)‖ ≤   𝑡𝐾‖𝑑(𝑧𝑛−1, 𝑧𝑛)‖ 

 

By Lemma 3.1{𝑧𝑛} converges to some𝑧 ∈ 𝑋. 

Hence, the sequences𝐴𝐵𝑥2𝑛 = 𝐽𝑥2𝑛+1 and 

𝑆𝑇𝑥2𝑛+1 = 𝐼𝑥2𝑛+2, which are subsequences also 

converges to the some point 𝑧.  

Let us now assume that 𝐼 is continuous so that the 

sequence{𝐼2𝑥2𝑛} and {𝐼𝐴𝐵𝑥2𝑛}converges to the 

same point𝐼𝑧. Also(𝐴𝐵, 𝐼) are compatible, so 

sequence {𝐴𝐵𝐼𝑥2𝑛}also converges to 𝐼𝑧. 
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Now,  

𝑑(𝐴𝐵𝐼𝑥2𝑛 , 𝑆𝑇𝑥2𝑛+1) ≤ 𝛼1 [
𝑑(𝐴𝐵𝐼𝑥2𝑛 , 𝐽𝑥2𝑛+1). 𝑑(𝐽𝑥2𝑛+1, 𝑆𝑇𝑥2𝑛+1) + 𝑑(𝑆𝑇𝑥2𝑛+1, 𝐼2𝑥2𝑛). 𝑑(𝐼2𝑥2𝑛 , 𝐴𝐵𝐼𝑥2𝑛)

𝑑(𝐴𝐵𝑥2𝑛, 𝐽𝑥2𝑛+1) + 𝑑(𝑆𝑇𝑥2𝑛+1, 𝐼2𝑥2𝑛)
] 

 

+𝛼2[𝑑(𝐴𝐵𝐼𝑥2𝑛, 𝐼2𝑥2𝑛) + 𝑑(𝐽𝑥2𝑛+1, 𝑆𝑇𝑥2𝑛+1)] 
 

+𝛼3𝑑(𝐼2𝑥2𝑛 , 𝐽𝑥2𝑛+1) 

 

+𝐹(𝑑(𝑆𝑇𝑥2𝑛+1, 𝐼2𝑥2𝑛). 𝑑(𝐼2𝑥2𝑛, 𝐴𝐵𝐼𝑥2𝑛)) 

 

which on using (5.1) and letting𝑛 → ∞ reduces to 

𝑑(𝐼𝑧, 𝑧) ≤ 𝛼1 [
𝑑(𝐼𝑧, 𝑧). 𝑑(𝑧. 𝑧) + 𝑑(𝐼𝑧, 𝑧). 𝑑(𝐼𝑧, 𝐼𝑧)

𝑑(𝐼𝑧, 𝑧) + 𝑑(𝑧, 𝐼𝑧)
] + 𝛼2[𝑑(𝐼𝑧, 𝐼𝑧) + 𝑑(𝑧, 𝑧)] 

 

+𝛼3𝑑(𝐼𝑧, 𝑧) + 𝐹(𝑑(𝐼𝑧, 𝑧). 𝑑(𝐼𝑧, 𝐼𝑧)) 

or 𝑑(𝐼𝑧, 𝑧) ≤ 𝛼3𝑑(𝐼𝑧, 𝑧) 

 

Yielding thereby𝐼𝑧 = 𝑧. 

Now, 

𝑑(𝐴𝐵𝑧, 𝑆𝑇𝑥2𝑛+1) ≤ 𝛼1 [
𝑑(𝐴𝐵𝑧, 𝐽𝑥2𝑛+1). 𝑑(𝐽𝑥2𝑛+1, 𝑆𝑇𝑥2𝑛+1) + 𝑑(𝑆𝑇𝑥2𝑛+1, 𝐼𝑧). 𝑑(𝐼𝑧, 𝐴𝐵𝑧)

𝑑(𝐴𝐵𝑧, 𝐽𝑥2𝑛+1) + 𝑑(𝑆𝑇𝑥2𝑛+1, 𝐼𝑧)
] 

 

 +𝛼2[𝑑(𝐴𝐵𝑧, 𝐼𝑧) + 𝑑(𝐽𝑥2𝑛+1, 𝑆𝑇𝑥2𝑛+1)] 
 

 +𝛼3𝑑(𝐼𝑧, 𝐽𝑥2𝑛+1) + 𝐹(𝑑(𝑆𝑇𝑥2𝑛+1, 𝐼𝑧). 𝑑(𝐼𝑧, 𝐴𝐵𝑧)) 

 

which on using (1) and letting 𝑛 → ∞reduces to 

𝑑(𝐴𝐵𝑧, 𝑧) ≤ 𝛼1 [
𝑑(𝐴𝐵𝑧, 𝑧). 𝑑(𝑧. 𝑧) + 𝑑(𝑧, 𝐼𝑧). 𝑑(𝐼𝑧, 𝐴𝐵𝑧)

𝑑(𝐴𝐵𝑧, 𝑧) + 𝑑(𝑧, 𝐼𝑧)
] + 𝛼2[𝑑(𝐴𝐵𝑧, 𝐼𝑧) + 𝑑(𝑧, 𝑧)] 

 

+𝛼3𝑑(𝐼𝑧, 𝑧) + 𝐹(𝑑(𝑧, 𝐼𝑧). 𝑑(𝐼𝑧, 𝐴𝐵𝑧)) 

 

Using𝐼𝑧 = 𝑧, we get 

𝑑(𝐴𝐵𝑧, 𝑧) ≤ 𝛼2𝑑(𝐴𝐵𝑧, 𝑧) 

 

Implying thereby𝐴𝐵𝑧 = 𝑧.  

Since𝐴𝐵(𝑋) ⊂ 𝐽(𝑋), there always exist a point 𝑧′such that𝐽𝑧′ = 𝑧 so that𝑆𝑇𝑧 = 𝑆𝑇(𝐽𝑧′). 

Now, using (2), we have 

𝑑(𝑧, 𝑆𝑇𝑧′) = 𝑑(𝐴𝐵𝑧, 𝑆𝑇𝑧′) 

 

≤ 𝛼1 [
𝑑(𝐴𝐵𝑧, 𝐽𝑧′). 𝑑(𝐽𝑧′, 𝑆𝑇𝑧′) + 𝑑(𝑆𝑇𝑧′, 𝐼𝑧). 𝑑(𝐼𝑧, 𝐴𝐵𝑧)

𝑑(𝐴𝐵𝑧, 𝐽𝑧′) + 𝑑(𝑆𝑇𝑧′, 𝐼𝑧)
] +𝛼2[𝑑(𝐴𝐵𝑧, 𝐼𝑧) + 𝑑(𝐽𝑧′, 𝑆𝑇𝑧′)] 

 

+𝛼3𝑑(𝐼𝑧, 𝐽𝑧′) + 𝐹(𝑑(𝑆𝑇𝑧′, 𝐼𝑧). 𝑑(𝐼𝑧, 𝐴𝐵𝑧)) 

 

= 𝛼1 [
𝑑(𝑧, 𝑧). 𝑑(𝑧, 𝑆𝑇𝑧′) + 𝑑(𝑆𝑇𝑧′, 𝑧). 𝑑(𝑧, 𝑧)

𝑑(𝑧, 𝑧) + 𝑑(𝑆𝑇𝑧′, 𝑧)
] +𝛼2[𝑑(𝑧, 𝑧) + 𝑑(𝑧, 𝑆𝑇𝑧′)]+𝛼3𝑑(𝑧, 𝑧) 

+𝐹(𝑑(𝑆𝑇𝑧′, 𝑧). 𝑑(𝑧, 𝑧)) 

= 𝛼2𝑑(𝑧, 𝑆𝑇𝑧′) + 𝐹(0) 

or,  𝑑(𝑧, 𝑆𝑇𝑧′) ≤ 𝛼2𝑑(𝑧, 𝑆𝑇𝑧′),  
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which implies that𝑆𝑇𝑧′ = 𝑧 = 𝐽𝑧′. It shows that (ST,J) have a coincidence point𝑧′ Now using the weak 

compatibility of (ST, J), we have 

𝑆𝑇𝑧 = 𝑆𝑇(𝐽𝑧′) = 𝐽(𝑆𝑇𝑧′) = 𝐽𝑧 

 

which shows that 𝑧 is also a coincidence point of the pair (ST, J). 

Now,  
𝑑(𝑧, 𝑆𝑇𝑧) = 𝑑(𝐴𝐵𝑧, 𝑆𝑇𝑧) 

 

≤ 𝛼1 [
𝑑(𝐴𝐵𝑧, 𝐽𝑧). 𝑑(𝐽𝑧, 𝑆𝑇𝑧) + 𝑑(𝑆𝑇𝑧, 𝐼𝑧). 𝑑(𝐼𝑧, 𝐴𝐵𝑧)

𝑑(𝐴𝐵𝑧, 𝐽𝑧) + 𝑑(𝑆𝑇𝑧, 𝐼𝑧)
] +𝛼2[𝑑(𝐴𝐵𝑧, 𝐼𝑧) + 𝑑(𝐽𝑧, 𝑆𝑇𝑧)] 

 

+𝛼3𝑑(𝐼𝑧, 𝐽𝑧) + 𝐹(𝑑(𝐴𝐵𝑧, 𝐼𝑧). 𝑑(𝐼𝑧, 𝑆𝑇𝑧)) 

 

= 𝛼1 [
𝑑(𝑧, 𝑆𝑇𝑧). 𝑑(𝑆𝑇𝑧, 𝑆𝑇𝑧) + 𝑑(𝑆𝑇𝑧, 𝑧). 𝑑(𝑧, 𝑧)

𝑑(𝑧, 𝑆𝑇𝑧) + 𝑑(𝑆𝑇𝑧, 𝑧)
] +𝛼2[𝑑(𝑧, 𝑧) + 𝑑(𝑆𝑇𝑧, 𝑆𝑇𝑧)] 

 

+𝛼3𝑑(𝑧, 𝑆𝑇𝑧) + 𝐹(𝑑(𝑧, 𝑧). 𝑑(𝑧, 𝑆𝑇𝑧)) 

 

= 𝛼3𝑑(𝑧, 𝑆𝑇𝑧) + 𝐹(0) 

 

or, 𝑑(𝑧, 𝑆𝑇𝑧) ≤ 3 𝑑(𝑧, 𝑆𝑇𝑧). 

 

Hence,𝑧 = 𝑆𝑇𝑧 = 𝐽𝑧, which shows that 𝑧 is a common fixed point of AB, I,ST and J. 

Now, we suppose that AB is continuous so that the sequence{𝐴𝐵2𝑥2𝑛} and{𝐴𝐵𝐼𝑥2𝑛} converges to𝐴𝐵𝑧. 

Since(𝐴𝐵, 𝐼) are compatible it follows that{𝐼𝐴𝐵𝑥𝑛} also converges to 𝐴𝐵𝑧. Thus, 

 𝑑(𝐴𝐵2𝑥2𝑛, 𝑆𝑇𝑥2𝑛+1) ≤ 𝛼1 [
𝑑(𝐴𝐵2𝑥2𝑛,𝐽𝑥2𝑛+1).𝑑(𝐽𝑥2𝑛+1,𝑆𝑇𝑥2𝑛+1)+𝑑(𝑆𝑇𝑥2𝑛+1,𝐼𝐴𝐵𝑥2𝑛+1).𝑑(𝐼𝐴𝐵𝑥2𝑛,𝐴𝐵2𝑥2𝑛)

𝑑(𝐴𝐵𝑧,𝐽𝑥2𝑛+1)+𝑑(𝑆𝑇𝑥2𝑛+1,𝐼𝑧)
] 

 +𝛼2𝑑(𝐴𝐵2𝑥2𝑛, 𝐼𝐴𝐵𝑥2𝑛) + 𝑑(𝐽𝑥2𝑛+1, 𝑆𝑇𝑥2𝑛+1) 

 +𝛼3𝑑(𝐼𝐴𝐵𝑥2𝑛, 𝐽𝑥2𝑛+1) 

 +𝐹(𝑑(𝑆𝑇𝑥2𝑛+1, 𝐼𝐴𝐵𝑥2𝑛). 𝑑(𝐼𝐴𝐵𝑥2𝑛, 𝐴𝐵2𝑥2𝑛)) 

 

which on using (1) and letting 𝑛 → ∞reduces to 

𝑑(𝐴𝐵𝑧, 𝑧) ≤ 𝛼1 [
𝑑(𝐴𝐵𝑧, 𝑧). 𝑑(𝑧. 𝑧) + 𝑑(𝑧, 𝐴𝐵𝑧). 𝑑(𝐴𝐵𝑧, 𝐴𝐵𝑧)

𝑑(𝐴𝐵𝑧, 𝑧) + 𝑑(𝑧, 𝐼𝑧)
] + 𝛼2[𝑑(𝐴𝐵𝑧, 𝐴𝐵𝑧) + 𝑑(𝑧, 𝑧)] 

 +𝛼3𝑑(𝐴𝐵𝑧, 𝑧) + 𝐹(𝑑(𝑧, 𝐴𝐵𝑧). 𝑑(𝐴𝐵𝑧, 𝐴𝐵𝑧)) 

or, 𝑑(𝐴𝐵𝑧, 𝑧) ≤ 𝛼3𝑑(𝐴𝐵𝑧, 𝑧) 

yielding thereby𝐴𝐵𝑧 = 𝑧. 

 

As earlier, there exists a point𝑧′ in 𝑋 such that𝐴𝐵𝑧 = 𝑧 = 𝐽𝑧′. Then,  

𝑑(𝐴𝐵2𝑥2𝑛, 𝑆𝑇𝑧′) ≤ 𝛼1 [
𝑑(𝐴𝐵2𝑥2𝑛 , 𝐽𝑧′). 𝑑(𝐽𝑧′, 𝑆𝑇𝑧′) + 𝑑(𝑆𝑇𝑧′, 𝐼𝐴𝐵𝑥2𝑛). 𝑑(𝐼𝐴𝐵𝑥2𝑛 , 𝐴𝐵2𝑥2𝑛)

𝑑(𝐴𝐵2𝑥2𝑛, 𝐽𝑧′) + 𝑑(𝑆𝑇𝑧′, 𝐼𝐴𝐵𝑥2𝑛)
] 

 +𝛼2𝑑(𝐴𝐵2𝑥2𝑛 , 𝐼𝐴𝐵𝑥2𝑛) + 𝑑(𝐽𝑧′, 𝑆𝑇𝑧′)+𝛼3𝑑(𝐼𝐴𝐵𝑥2𝑛 , 𝐽𝑧′) 

 +𝐹(𝑑(𝑆𝐼𝑧′, 𝐼𝐴𝐵𝑥2𝑛). 𝑑(𝐼𝐴𝐵𝑥2𝑛, 𝐴𝐵2𝑥2𝑛)) 

 

which on letting 𝑛 → ∞ reduces to 

𝑑(𝑧, 𝑆𝑇𝑧′) ≤ 𝛼1 [
𝑑(𝐴𝐵𝑧, 𝐽𝑧′). 𝑑(𝐽𝑧′. 𝑆𝑇𝑧′) + 𝑑(𝑆𝑇𝑧′, 𝐴𝐵𝑧). 𝑑(𝐴𝐵𝑧, 𝐴𝐵𝑧)

𝑑(𝐴𝐵𝑧, 𝐽𝑧′) + 𝑑(𝑆𝑇𝑧′, 𝐴𝐵𝑧)
] 

 +𝛼2[𝑑(𝐴𝐵𝑧, 𝐴𝐵𝑧) + 𝑑(𝐽𝑧′, 𝑆𝑇𝑧′)]+𝛼3𝑑(𝐴𝐵𝑧, 𝐽𝑧′) 

 +𝐹(𝑑(𝑆𝑇𝑧′, 𝐴𝐵𝑧). 𝑑(𝐴𝐵𝑧, 𝐴𝐵𝑧)) 

or, 𝑑(𝑧, 𝑆𝑇𝑧′) ≤ 𝛼2𝑑(𝑧, 𝑆𝑇𝑧′). 

This gives𝑆𝑇𝑧′ = 𝑧 = 𝐽𝑧′.  
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Thus,𝑧′is a coincidence point of ST and J. Since, the view of weakly compatibility of the pair(𝑆𝑇, 𝐽),one has 

𝑆𝑇𝑧 = 𝑆𝑇(𝐽𝑧′) = 𝐽(𝑆𝑇𝑧′) = 𝐽𝑧, which shows that𝑆𝑇𝑧 = 𝐽𝑧.  

Further,  

𝑑(𝐴𝐵𝑥2𝑛, 𝑆𝑇𝑧) ≤ 𝛼1 [
𝑑(𝐴𝐵𝑥2𝑛, 𝐽𝑧). 𝑑(𝐽𝑧, 𝑆𝑇𝑧) + 𝑑(𝑆𝑇𝑧, 𝐼𝑥2𝑛). 𝑑(𝐼𝑥2𝑛, 𝐴𝐵𝑥2𝑛)

𝑑(𝐴𝐵𝑥2𝑛, 𝐽𝑧) + 𝑑(𝑆𝑇𝑧, 𝐼𝑥2𝑛)
] 

 +𝛼2[𝑑(𝐴𝐵𝑥2𝑛, 𝐼𝑥2𝑛) + 𝑑(𝑆𝑇𝑧, 𝐽𝑧)]+𝛼3𝑑(𝐼𝑥2𝑛, 𝐽𝑧) 

 +𝐹(𝑑(𝐼𝑥2𝑛, 𝑆𝑇𝑧). 𝑑(𝐼𝑥2𝑛, 𝐴𝐵𝑥2𝑛)) 

 

which on using (1), letting 𝑛 → ∞, and using 𝑆𝑇𝑧 = 𝐽𝑧,  reduces to 

𝑑(𝑧, 𝑆𝑇𝑧) ≤ 𝛼1 [
𝑑(𝑧, 𝐽𝑧). 𝑑(𝐽𝑧. 𝑆𝑇𝑧) + 𝑑(𝑆𝑇𝑧, 𝑧). 𝑑(𝑧, 𝑧)

𝑑(𝑧, 𝐽𝑧) + 𝑑(𝑆𝑇𝑧, 𝑧)
] + 𝛼2[𝑑(𝑧, 𝑧) + 𝑑(𝐽𝑧, 𝑆𝑇𝑧)] 

 +𝛼3𝑑(𝑧, 𝐽𝑧) + 𝐹(𝑑(𝑆𝑇𝑧, 𝑧). 𝑑(𝑧, 𝑧)) 

 

which implies that, 

𝑑(𝑧, 𝑆𝑇𝑧) ≤ 𝛼3𝑑(𝑧, 𝑆𝑇𝑧) 

 

This gives,𝑆𝑇𝑧 = 𝑧 = 𝐽𝑧. It follows from the upper part. 

Again, since𝑆𝑇(𝑋) ⊂ 𝐼(𝑋) there always exist a point 𝑧"in 𝑋, such that 𝐼𝑧" = 𝑧.  

Thus, 

 𝑑(𝐴𝐵𝑧", 𝑧) = 𝑑(𝐴𝐵𝑧", 𝑆𝑇𝑧) 

≤ 𝛼1 [
𝑑(𝐴𝐵𝑧", 𝐽𝑧). 𝑑(𝐽𝑧, 𝑆𝑇𝑧) + 𝑑(𝑆𝑇𝑧, 𝐼𝑧"). 𝑑(𝐼𝑧", 𝐴𝐵𝑧")

𝑑(𝐴𝐵𝑧", 𝐽𝑧) + 𝑑(𝑆𝑇𝑧, 𝐼𝑧")
] 

 +𝛼2[𝑑(𝐴𝐵𝑧", 𝐼𝑧") + 𝑑(𝐽𝑧, 𝑆𝑇𝑧)]+𝛼3𝑑(𝐼𝑧", 𝐽𝑧) 

 +𝐹(𝑑(𝑆𝑇𝑧, 𝐼𝑧"). 𝑑(𝐼𝑧", 𝐴𝐵𝑧")) 

 

= 𝛼1 [
𝑑(𝐴𝐵𝑧", 𝑧). 𝑑(𝑧, 𝑧) + 𝑑(𝑧, 𝑧). 𝑑(𝑧, 𝐴𝐵𝑧")

𝑑(𝐴𝐵𝑧", 𝑧) + 𝑑(𝑧, 𝑧)
] +𝛼2[𝑑(𝐴𝐵𝑧", 𝑧) + 𝑑(𝑧, 𝑧)] 

 +𝛼3𝑑(𝑧, 𝑧) + 𝐹(𝑑(𝑧, 𝑧). 𝑑(𝑧, 𝐴𝐵𝑧")) 

 = 𝛼2𝑑(𝐴𝐵𝑧", 𝑧) + 𝐹(0) 

equivalently,  𝑑(𝐴𝐵𝑧", 𝑧) ≤ 𝛼2𝑑(𝐴𝐵𝑧", 𝑧). 

 

Which shows that𝐴𝐵𝑧" = 𝑧. 

Also, since(𝐴𝐵, 𝐼) are compatible and hence weakly compatible, we obtain 

 𝑑(𝐴𝐵𝑧, 𝐼𝑧) = 𝑑(𝐴𝐵(𝐼𝑧),I(ABz)) 

 ≤ 𝑑(𝐼𝑧,ABz) = 𝑑(𝑧, 𝑧) = 0 

Therefore, 𝐴𝐵𝑧 = 𝐼𝑧 = 𝑧. 

 

Thus, we have proved that 𝑧 is a common fixed 

point of AB, ST, I and J. 

Instead of AB or I, if mappings ST or J is 

continuous, then the proof that 𝑧 is a common 

fixed point of AB, ST, I and J is similar. 

 

To show that 𝑧 is unique, let𝑣 be the another fixed point of I, J, AB and ST.Then, 

𝑑(𝑧, 𝑣) = 𝑑(𝐴𝐵𝑧, 𝑆𝑇𝑣) 

≤ 𝛼1 [
𝑑(𝐴𝐵𝑧, 𝐽𝑣). 𝑑(𝐽𝑣, 𝑆𝑇𝑣) + 𝑑(𝑆𝑇𝑣, 𝑇𝑧). 𝑑(𝐼𝑧, 𝐴𝐵𝑧)

𝑑(𝐴𝐵𝑧, 𝐽𝑣) + 𝑑(𝑆𝑇𝑣, 𝐼𝑧)
] +𝛼2[𝑑(𝐴𝐵𝑧, 𝐼𝑧) + 𝑑(𝐽𝑣, 𝑆𝑇𝑣)] 

 +𝛼3𝑑(𝐼𝑧, 𝐽𝑣) + 𝐹(𝑑(𝑆𝑇𝑣, 𝐼𝑧). 𝑑(𝐼𝑧, 𝐴𝐵𝑧)) 

or, 𝑑(𝑧, 𝑣) = 𝛼3𝑑(𝑧, 𝑣) + 𝐹(0) 

or, 𝑑(𝑧, 𝑣) ≤ 3 𝑑(𝑧, 𝑣). 
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yielding thereby𝑧 = 𝑣.  

 

Finally, we need to show that 𝑧 is also a common 

fixed point of A,B,S,T,I and J. For this, let 𝑧 be  

the unique common fixed point of both the pairs 

(AB, I) and (ST, J).Then, 

 𝐴𝑧 = 𝐴(𝐴𝐵𝑧) = 𝐴(𝐵𝐴𝑧) = 𝐴𝐵(𝐴𝑧) 

 𝐴𝑧 = 𝐴(𝐼𝑧) = 𝐼(𝐴𝑧) 

 𝐵𝑧 = 𝐵(𝐴𝐵𝑧) = 𝐵(𝐴(𝐵𝑧)) = 𝐵𝐴(𝐵𝑧) =

𝐴𝐵(𝐵𝑧) 

 𝐵𝑧 = 𝐵(𝐼𝑧) = 𝐼(𝐵𝑧) 

which show that Az and Bzare common fixed 

points of (AB, I) yielding thereby 

Az=z=Bz=Iz=ABz in the view of uniqueness of 

common fixed point of the pair (AB, I). 

 

Similarly, using the commutativity of (𝑆, 𝑇), (𝑆, 𝐽) 

and (𝑇, 𝐽) it can be shown that 𝑆𝑧 = 𝑧 = 𝑇𝑧 =
𝐽𝑧 = 𝑆𝑇𝑧. 

 

Now we need to show that 𝐴𝑧 = 𝑆𝑧 (𝐵𝑧 = 𝑇𝑧), also remains a common fixed point of both the pairs (𝐴𝐵, 𝐼) 

and (𝑆𝑇, 𝐽). For this, 

 𝑑(𝐴𝑧, 𝑆𝑧) = 𝑑(𝐴(𝐵𝐴𝑧), 𝑆(𝑇𝑆𝑧)) 

 = 𝑑(𝐴𝐵(𝐴𝑧), 𝑆𝑇(𝑆𝑧)) 

≤ 𝛼1 [
𝑑(𝐴𝐵(𝐴𝑧), 𝐽(𝑆𝑧)). 𝑑(𝐽(𝑆𝑧), 𝑆𝑇(𝑆𝑧)) + 𝑑(𝑆𝑇(𝑆𝑧), 𝐼(𝐴𝑧)). 𝑑(𝐼(𝐴𝑧), 𝐴𝐵(𝐴𝑧))

𝑑(𝐴𝐵(𝐴𝑧), 𝐽(𝑆𝑧)) + 𝑑(𝑆𝑇(𝑆𝑧), 𝐼(𝐴𝑧))
] 

 +𝛼2[𝑑(𝐴𝐵(𝐴𝑧), 𝐼(𝐴𝑧)) + 𝑑(𝐽(𝑆𝑧), 𝑆𝑇(𝑆𝑧))]+𝛼3𝑑(𝐼(𝐴𝑧), 𝐽(𝑆𝑧)) 

 +𝐹 (𝑑(𝑆𝑇(𝑆𝑧), 𝐼(𝐴𝑧)). 𝑑(𝐼(𝐴𝑧), 𝐴𝐵(𝐴𝑧))) 

implies that𝑑(𝐴𝑧, 𝑆𝑧) = 0 as 𝑑(𝐴𝐵(𝐴𝑧), 𝐽(𝑆𝑧)) + 𝑑(𝑆𝑇(𝑆𝑧), 𝐼(𝐴𝑧)) = 0 

Using condition (3), yielding 𝐴𝑧 = 𝑆𝑧. 

Similarly, it can be shown that 𝐵𝑧 = 𝑇𝑧.  

Thus, 𝑧 is the unique common fixed point of A,B,S,T,I, and J 

 

Case – II : 

Suppose that𝑑(𝐴𝐵𝑥, 𝐽𝑦) + 𝑑(𝑆𝑇𝑦, 𝐼𝑥) = 0 implies that𝑑(𝐴𝐵𝑥, 𝑆𝑇𝑦) = 0.then we argue as follows: 

Suppose that there exists an 𝑛 such that 𝑧𝑛 = 𝑧𝑛+1. 
Then, also 𝑧𝑛+1 = 𝑧𝑛+2, suppose not. Then from (4) we have  

0 < 𝑑(𝑧𝑛+1, 𝑧𝑛+2) ≤ 𝑘𝑑(𝑧𝑛+1, 𝑧𝑛) 

yielding thereby𝑧𝑛+1 = 𝑧𝑛+2. 

 

Thus, 𝑧𝑛 = 𝑧𝑛+𝑘 for𝑘 = 1,2, …Then it follows that there exist two points 𝑤1 and 𝑤2 such that𝑣1 = 𝐴𝐵𝑤1 =
𝐽𝑤2 and 𝑣2 = 𝑆𝑇𝑤2 = 𝐼𝑤1.  

Since,  𝑑(𝐴𝐵𝑤1, 𝐽𝑤2) + 𝑑(𝑆𝑇𝑤2, 𝐼𝑤1) = 0,then from (2.4),  

 𝑑(𝐴𝐵𝑤1, 𝑆𝑇𝑤2) = 0 i.e 𝑣1 = 𝐴𝐵𝑤2 = 𝑆𝑇𝑤2 = 𝑣2 

Also note that,  𝐼𝑣1 = 𝐼(𝐴𝐵𝑤1) = 𝐴𝐵(𝐼𝑤1) = 𝐴𝐵𝑣2 

Similarly
, 

𝑆𝑇𝑣2 = 𝐽𝑣2. 

Define,𝑦1 = 𝐴𝐵𝑣1, 𝑦2 = 𝑆𝑇𝑣2, 

Since𝑑(𝐴𝐵𝑣1, 𝐽𝑣2) + 𝑑(𝑆𝑇𝑣2, 𝐽𝑣1) = 0, it follows from (5.3) that𝑑(𝐴𝐵𝑣1, 𝑆𝑇𝑣2) = 0  i.e.𝑦1 = 𝑦2. 

Thus, 𝐴𝐵𝑣1 = 𝐼𝑣1 = 𝑆𝑇𝑣2 = 𝐽𝑣2.  

But𝑣1 = 𝑣2. 

 

Therefore, AB,I,ST and J have a common 

coincidence points. 

Define𝑤 = 𝐴𝐵𝑣1, it then follows that 𝑤 is also a 

common coincidence point of AB,I, STand J.If 
𝐴𝐵𝑤 ≠ 𝐴𝐵𝑣1 = 𝑆𝑇𝑣1 then 𝑑(𝐴𝐵𝑤, 𝑆𝑇𝑣1) > 0. 

 

But, since𝑑(𝐴𝐵𝑤, 𝐽𝑣) + 𝑑(𝑆𝑇𝑣1, 𝐼𝑤) = 0, it 

follows from (5.3) that 𝑑(𝐴𝐵𝑤, 𝑆𝑇𝑣1) = 0, i.e 

𝐴𝐵𝑤 = 𝑆𝑇𝑣1, a contradiction. Therefore, 𝐴𝐵𝑤 =
𝑆𝑇𝑣1 = 𝑤  and 𝑤 is a common fixed point of AB, 

ST, I and J. 

 

The other part is identical to the case (I), hence it 

is omitted, this completes the proof. 
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If𝐹(𝑡) = 0, for all 
+ Rt  in Theorem 3.2, we get the following result. 

 

Theorem3.3: 

Let(𝑋, 𝑑) be a cone metric space and 𝑃 a normal cone with  normal constant 𝐾. Suppose mappings 

𝐴, 𝐵, 𝑆, 𝑇, 𝐼, 𝐽: 𝑋 → 𝑋, satisfying𝐴𝐵(𝑋) ⊂ 𝐽(𝑋), 𝑆𝑇(𝑋) ⊂ 𝐼(𝑋) and for each𝑥, 𝑦 ∈ 𝑋 either, 

𝑑(𝐴𝐵𝑥, 𝑆𝑇𝑦) ≤ 𝛼1 [
𝑑(𝐴𝐵𝑥, 𝐽𝑦). 𝑑(𝐽𝑦, 𝑆𝑇𝑦) + 𝑑(𝑆𝑇𝑦, 𝐼𝑥). 𝑑(𝐼𝑥, 𝐴𝐵𝑥)

𝑑(𝐴𝐵𝑥, 𝐽𝑦) + 𝑑(𝑆𝑇𝑦, 𝐼𝑥)
] 

 +𝛼2[𝑑(𝐴𝐵𝑥, 𝐼𝑥) + 𝑑(𝐽𝑦, 𝑆𝑇𝑦)]+𝛼3𝑑(𝐼𝑥, 𝐽𝑦) … (5) 

 

if 𝑑(𝐴𝐵𝑥, 𝐽𝑦) + 𝑑(𝑆𝑇𝑦, 𝐼𝑥) ≠ 0, 𝛼𝑖 ≥ 0 (𝑖 = 1,2,3 … ) with atleast one 𝛼𝑖 non zero and𝛼1 + 2𝛼2 + 𝛼3 ≤ 1 

 𝑑(𝐴𝐵𝑥, 𝑆𝑇𝑦) = 0 if 𝑑(𝐴𝐵𝑥, 𝐽𝑦) + 𝑑(𝑆𝑇𝑦, 𝐼𝑥) = 0 … (6) 

 

if either 

(a)(AB, I) are compatible, I or AB is continuous 

and (ST,J) are weakly compatible or(𝑎′) (ST,J) are 

compatible, J or ST is continuousthen,AB,ST, I 

and J have a unique common fixed point. 

Furthermore, if the pairs 

),(),,(),,(),,(),,( JSTSIBIABA and ),( JT  are 

commuting mappings then A,B,S,T ,I and J have a 

unique common fixed point. 

 

Putting𝛼2 = 0, 𝐴𝐵 = 𝐴 and 𝑆𝑇 = 𝐵,this will give 

the following generalization of Jeong-Rhoades [8]  

in cone metric spaces. 

 

Corollary 3.4:Let(𝑋, 𝑑) be a cone metric space and 𝑃 a normal cone with  normal constant 𝐾. Suppose 

mappings 𝐴, 𝐵, 𝑆, 𝑇: 𝑋 → 𝑋satisfying𝐴(𝑋) ⊂ 𝑇(𝑋), 𝐵(𝑋) ⊂ 𝑆(𝑋)  and for each𝑥, 𝑦 ∈ 𝑋 either 

𝑑(𝐴𝑥, 𝐵𝑦) ≤ 𝛼 [
𝑑(𝐴𝑥, 𝑆𝑥). 𝑑(𝑆𝑥, 𝐵𝑦) + 𝑑(𝐵𝑦, 𝑇𝑦). 𝑑(𝑇𝑦, 𝐴𝑥)

𝑑(𝑆𝑥, 𝐵𝑦) + 𝑑(𝑇𝑦, 𝐴𝑥)
] + 𝛽𝑑(𝑆𝑥, 𝑇𝑦) 

If𝑑(𝑆𝑥, 𝐵𝑦) + 𝑑(𝑇𝑦, 𝐴𝑥) ≠ 0 where 𝛼, 𝛽 ≥ 0, 𝛼 + 𝛽 < 1 

or, 𝑑(𝐴𝑥, 𝐵𝑦) = 0 if 𝑑(𝑆𝑥, 𝐵𝑦) + 𝑑(𝑇𝑦, 𝐴𝑥) = 0 

 

if either 

(a) (A, S) are compatible, A or S is continuous and 

(B,T) are weakly compatible or(𝑎′)(B,T) are 

compatible, B or T is continuous and (A,S) are 

weakly compatible, then A,B,S and T have a 

unique common fixed point 𝑧. Moreover,𝑧 is the 

unique common fixed point of A and S and of B 

and T. 
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