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Abstract 

Jungck and Rhoades [13] introduced the notion of 

weakly compatible mappings, which is weaker 

than compatibility. Many interesting fixed point 

theorems for weakly compatible maps satisfying 

contractive type conditions have been obtained by 

various authors. In this paper, we  prove a 

common fixed point theorem for three pairs of 

weakly compatible mappings satisfying a rational 

inequality without any continuity requirement 

which generalize several previously known results 

due to Imdad and Ali [3], Goyal([3], [4]),Goyal 

and Gupta ( [5], [6] ),Imdad-Khan [4], Jeong-

Rhoades [10] and others. 
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1. INTRODUCTION AND PRELIMINARIES:  

Huang and Zhang [8] generalized the concept of a 

cone metric space, re-placing the set of real 

numbers by an ordered Banach space and obtained 

some common fixed point  theorems for mappings 

satisfying different contractive conditions over 

cone metric space. Subsequently, Abbas and 

Jungck[1] and Abbas and Rhoades[2] studied 

common fixed point theorems in cone metric 

spaces. Moreover, Huang and Zhang [8], Abbas 

and Jungck[1], IIlic and Rakocevic [9] proved 

their results for normal cones. Jungck [12]  

generalized the concept of weak commuting by 

defining the term compatible mappings and 

proved that the weakly commuting mappings are 

compatible but the converse is not true. Jungck 

and Rhoades [13] defined a pair of self-mappings 

to be weakly compatible if they commute at their 

coincidence points. In recent years, several 

authors have obtained coincidence point results 

for various classes of mappings on a metric space 

utilizing these concepts. In this paper, we  prove a 

common fixed point theorem for three pairs of 

weakly compatible mappings satisfying a rational 

inequality without any continuity requirement in 

complete cone metric spaces. Our work 

generalizes some earlier results of Imdad and Ali 

[3], Nesic [18], Jeong and Rhoades [10], Goyal 

([3], [4]),Goyal and Gupta ( [5], [6] ). 

Someexamples are also furnished to demonstrate 

the validity of the hypothesis. 

 

The following definitions are in literature of 

Huang and Zhang [8]. 

 

Definition 1.1: Let 𝐸 be a real Banach space and 

𝑃 be a subset of 𝐸. The subset 𝑃 is called a cone if 

and only if 

(a) 𝑃 is closed, non-empty and 𝑃 ≠ {0} 

(b) 𝑎, 𝑏 ∈ 𝑅, 𝑎, 𝑏 ≥ 0, 𝑥, 𝑦 ∈ 𝑃 implies 𝑎𝑥 +
𝑏𝑦 ∈ 𝑃 

(c) 𝑥 ∈ 𝑃 and  −𝑥 ∈ 𝑃 ⇒ 𝑥 = 0 i.e 𝑃 ∩ (−𝑃) =
{0} 

 

Definition 1.2: Let 𝑃 be a cone in a Banach space 

𝐸 i.e. given a cone 𝑃 ⊂ 𝐸, define partial ordering 

‘≤’ with respect to 𝑃 by 𝑥 ≤ 𝑦 if and only if 𝑦 −
𝑥 ∈ 𝑃. We shall write 𝑥 < 𝑦 to indicate 𝑥 ≤ 𝑦 but 

𝑥 ≠ 𝑦while 𝑥 ≪ 𝑦 will stand for 𝑦 − 𝑥 ∈ 𝐼𝑛𝑡 𝑃, 

where 𝐼𝑛𝑡 𝑃 denote the interior of the set 𝑃. This 

cone 𝑃 is called an order cone. 

 

Definition 1.3: Let 𝐸 be a real Banach space and 

𝑃 ⊂ 𝐸 be an order cone. The cone 𝑃 is called 

normal if there is a number 𝐾 > 0 such that for all 

𝑥, 𝑦 ∈ 𝐸, 

0 ≤ 𝑥 ≤ 𝑦 implies ‖𝑥‖ ≤ 𝐾‖𝑦‖ 
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The least positive number 𝐾 satisfying the above 

inequality is called the normal constant of 𝑃. 

 

Definition 1.4: Let 𝑋 be a non-empty and 𝐸 be a 

real Banach space. Suppose that the mapping 

𝑑: 𝑋 × 𝑋 → 𝐸 satisfies 

(d1) 0 ≤ 𝑑(𝑥, 𝑦) for all 𝑥, 𝑦 ∈ 𝑋 and 𝑑(𝑥, 𝑦) = 0 

if and only if 𝑥 = 𝑦 

(d2) 𝑑(𝑥, 𝑦) = 𝑑(𝑦, 𝑥) for all 𝑥, 𝑦 ∈ 𝑋 

(d3) 𝑑(𝑥, 𝑦) ≤ 𝑑(𝑥, 𝑧) + 𝑑(𝑧, 𝑦) for all 𝑥, 𝑦, 𝑧 ∈ 𝑋 

Then 𝑑 is called a cone metric on 𝑋 and (𝑋, 𝑑) is 

called a cone metric space. 

It is obvious that cone metric spaces generalize 

metric spaces because each metric space is a cone 

metric space with 𝐸 = 𝑅 and 𝑃 = [0, +∞[ 
 

Example 1.5: (a) Let 𝐸 = 𝑅2, 𝑃 = {(𝑥, 𝑦) ∈
𝐸 |𝑥, 𝑦 ≥ 0} ⊂ 𝑅2, 𝑋 = 𝑅 and 𝑑: 𝑋 × 𝑋 → 𝐸 such 

that 

𝑑(𝑥, 𝑦) = (|𝑥 − 𝑦|, 𝛼|𝑥 − 𝑦|), where 𝛼 ≥ 0 is a 

constant.  

Then (𝑋, 𝑑) is a cone metric space. 

(b) Let 𝐸 = 𝑅𝑛 with 𝑃 = {(𝑥𝑖, … , 𝑥𝑛): 𝑥𝑖 ≥
0, ∀𝑖 = 1,2, … , 𝑛}𝑋 = 𝑅 and 𝑑: 𝑋 × 𝑋 → 𝐸 such 

that 𝑑(𝑥, 𝑦) = (|𝑥 − 𝑦|, 𝛼𝑖|𝑥 − 𝑦|, … , 𝛼𝑛−1|𝑥 −
𝑦|) 

where 𝛼𝑖 ≥ 0 for all 1 ≤ 𝑖 ≤ 𝑛 − 1. Then (𝑋, 𝑑) 

is a cone metric space. 

 

Definition 1.6: Let (𝑋, 𝑑) be a cone metric space. 

Let {𝑥𝑛} be a sequence in 𝑋 and 𝑥 ∈ 𝑋. We say 

that {𝑥𝑛}is a 

(a) convergent sequence or {𝑥𝑛} converges to 𝑥 if 

for every 𝑐 in 𝐸 with 𝑐 ≫ 0, there is an 𝑛0 ∈ 𝑁 

such that for all 𝑛 > 𝑛0, 𝑑(𝑥𝑛, 𝑥) ≪ 𝑐 for some 

fixed point 𝑥 in 𝑋 where 𝑥 is that limit of {𝑥𝑛}. 

This is denoted by lim
𝑛→∞

𝑥𝑛 = 𝑥 or 𝑥𝑛 → 𝑥, 𝑛 →

∞. Completeness is defined in the standard way. 

It was proved in [7] if (𝑋, 𝑑) be a cone metric 

space, 𝑃 be a normal cone with normal constant 𝐾 

and {𝑥𝑛} converges to 𝑥 if and only if 𝑑(𝑥𝑛, 𝑥) →
0 as 𝑛 → ∞. 

 

(b) Cauchy sequence if for 𝑐 in 𝐸 with 𝑐 ≫ 0, 

there is an 𝑛0 ∈ 𝑁 such that for all 𝑛, 𝑚 > 𝑛0, 

𝑑(𝑥𝑛, 𝑥𝑚) ≪ 𝑐. 

It was proved in [7] if (𝑋, 𝑑) be a cone metric 

space, 𝑃 be a normal cone with normal constant 𝐾 

and {𝑥𝑛} be a sequence in 𝑋, then {𝑥𝑛} is a 

Cauchy sequnence  if and only if 𝑑(𝑥𝑛, 𝑥𝑚) → 0 

as 𝑛, 𝑚 → ∞. 

 

Definition 1.7: A cone metric space 𝑋 is said to 

be complete if every Cauchy sequence in 𝑋 is 

convergent in 𝑋. It is known that {𝑥𝑛} converges 

to 𝑥 ∈ 𝑋 if and only if 𝑑(𝑥𝑛, 𝑥) → 0 as 𝑛 → ∞. 

The limit of a convergent sequence in unique 

provided 𝑃 is a normal cone with normal constant 

𝐾. 

 

In recent years several definitions of conditions 

weaker than commutativity have appeared which 

facilitated significantly to extend the Jungck’s[12] 

theorem and several others. Foremost among of 

them is perhaps the weak commutativity condition 

introduced by Sessa [18] which can be described 

as follows: 

 

Definition 1.8: Let 𝑆 and 𝑇 be mappings from a 

cone metric space (𝑋, 𝑑) into itself. Then 𝑆 and 𝑇 

are said to be weakly commuting mappings on 𝑋 

if  

𝑑(𝑆𝑇𝑥, 𝑇𝑆𝑥) ≤ 𝑑(𝑆𝑥, 𝑇𝑥), for all 𝑥 ∈ 𝑋. 

obviously a commuting pair is weakly commuting 

but its converse need not be true as is evident from 

the following example. 

 

Example 1.9: Consider the set 𝑋 = [0,1] with the 

usual metric defined by 

𝑑(𝑥, 𝑦) = |𝑥 − 𝑦| = ‖𝑥 − 𝑦‖ 

Define 𝑆 and 𝑇: 𝑋 → 𝑋 by  

𝑆𝑥 =
𝑥

3−2𝑥
 and 𝑇𝑥 =

𝑥

3
 for all 𝑥 ∈ 𝑋. 

Then, we have to any 𝑥 in 𝑋 

𝑆𝑇𝑥 =
𝑥

9−2𝑥
 and 𝑇𝑆𝑥 =

𝑥

9−6𝑥
 

Hence 𝑆𝑇 ≠ 𝑇𝑆. Thus, 𝑆 and 𝑇 do not commute. 

Again,  𝑑(𝑆𝑇𝑥, 𝑇𝑆𝑥) = ‖
𝑥

9−2𝑥
−

𝑥

9−6𝑥
‖ 

  =
4𝑥2

(9−2𝑥)(9−6𝑥)
 

 ≤
2𝑥2

3(3−2𝑥)
=

𝑥

3−2𝑥
−

𝑥

3
 

 = 𝑑(𝑆𝑥, 𝑇𝑥) 

and thus 𝑆 and 𝑇 commute weakly. 

 

Example 1.10: Consider the set 𝑋 = [0,1] with 

the usual metric 𝑑(𝑥, 𝑦) = ‖𝑥 − 𝑦‖. Let 𝑆𝑥 =
𝑥

2
 

and 𝑇𝑥 =
𝑥

2+𝑥
 , for every 𝑥 ∈ 𝑋. Then, for all 𝑥 ∈

𝑋 

𝑆𝑇𝑥 =
𝑥

4+2𝑥
 and 𝑇𝑆𝑥 =

𝑥

4+𝑥
 

Hence, 𝑆𝑇 ≠ 𝑇𝑆. Thus, 𝑆 and 𝑇 do not commute. 

Again,  𝑑(𝑆𝑇𝑥, 𝑇𝑆𝑥) = ‖
𝑥

4+2𝑥
−

𝑥

4+𝑥
‖ 

  =
𝑥2

(4+𝑥)(4+2𝑥)
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 ≤
𝑥2

4+2𝑥
=

𝑥

2
−

𝑥

2+𝑥
 

 = 𝑑(𝑆𝑥, 𝑇𝑥) 

 

and thus, 𝑆 and 𝑇 commute weakly. 

Obviously, the class of weakly commuting is 

wider and includes commuting mappings as 

subclass. 

Jungck [12] has observed that for X = R if Sx = x3 

and Tx = 2x3 then S and T are not weakly 

commuting. Thus it is desirable to a less 

restrictive concept which he termed as 

‘compatibility’ the class of compatible mappings 

is still wider and includes weakly commuting 

mappings as subclass as is evident from the 

following definition of Jungck [12]. 

 

Definition 1.11: Let 𝑆 and 𝑇 be self mappings on 

a cone metric space (𝑋, 𝑑). Then 𝑆 and 𝑇 are said 

to be compatible mappings on 𝑋 if 

lim
𝑛→∞

𝑑(𝑆𝑇𝑥𝑛, 𝑇𝑆𝑥𝑛) = 0 whenever {𝑥𝑛} is a 

sequence in 𝑋 such that 

lim
𝑛→∞

𝑆𝑥𝑛 = lim
𝑛→∞

𝑇𝑥𝑛 = 𝑡 for some point 𝑡 ∈ 𝑋. 

 

Obviously, any weakly commuting pair {𝑆, 𝑇}  is 

compatible, but the converse is not necessarily 

true, as in the following example. 

Example 1.12: Let Sx = x3 and Tx = 2x3 with X = 

R with the usual metric. Then S and T are 

compatible, since |𝑇𝑥 − 𝑆𝑥| = |𝑥3| → 0  if and 

only if  |𝑆𝑇𝑥 − 𝑇𝑆𝑥| = 6|𝑥9| → 0 But |𝑆𝑇𝑥 −

𝑇𝑆𝑥| ≤ |𝑇𝑥 − 𝑆𝑥| is not true for all Xx , say 

for example at x = 1. 

 

Definition 1.13: Let 𝑆 and 𝑇 be self maps of a set 

𝑋. If 𝑤 = 𝑆𝑥 = 𝑇𝑥 for some 𝑥 in 𝑋, then 𝑥 is 

called a coincidence point of 𝑆 and 𝑇 and 𝑤 is 

called a point of coincidence of 𝑆 and 𝑇. 

 

Definition 1.14:A pair of self mappings (𝑆, 𝑇) on 

a cone metric space (𝑋, 𝑑) is said to be weakly 

compatible if the mappings commute at their 

coincidence points i.e 𝑆𝑥 = 𝑇𝑥 for some 𝑥 ∈ 𝑋 

implies that 𝑆𝑇𝑥 = 𝑇𝑆𝑥. 

 

Example 1.15:Let X = [2, 20] with usual metric define 








=









−

+

=

=
528

]20,5(}2{2

2053

5212

22

xif

xif
Sxand

xifx

xifx

xif

Tx  

S and T are weakly compatible mappings which is not compatible. 

 

Remark 1.16: Let (𝑋, 𝑑) be a cone metric space 

with a cone 𝑃. If 𝑑(𝑥, 𝑦) ≤ ℎ𝑑(𝑥, 𝑦) for all 

𝑥, 𝑦 ∈ 𝑋,ℎ ∈ (0,1), then 𝑑(𝑥, 𝑦) = 0, which 

implies that 𝑥 = 𝑦. 

 

2. MAIN RESULTS 

Let 𝑅+  be the set  of non-negative real numbers, 

and let 𝐹: 𝑅+ → 𝑅+ be a mapping such  that 

𝐹(0) = 0 and 𝐹 is continuous at 0. 

Motivated by the contractive condition given by, 

Jeong Rhoades [10] and Nesic [16]we prove the 

following theorem. 

 

Theorem 2.1:  Let (𝑋, 𝑑) be a complete cone metric space and 𝑃 be a normal cone with normal constant 𝐾. 

Let A, B, S, T, I and J be self-mappings of a cone metric space (𝑋, 𝑑) satisfying 𝐴𝐵(𝑋) ⊂ 𝐽(𝑋), 𝑆𝑇(𝑋) ⊂
𝐼(𝑋) such that for each 𝑥, 𝑦 ∈ 𝑋 either  

𝑑(𝐴𝐵𝑥, 𝑆𝑇𝑦)≤ 𝛽1 [
{𝑑(𝐴𝐵𝑥, 𝐼𝑥)}2 + {𝑑(𝑆𝑇𝑦, 𝐽𝑦)}2

𝑑(𝐴𝐵𝑥, 𝐼𝑥) + 𝑑(𝑆𝑇𝑦, 𝐽𝑦)
] +𝛽2𝑑(𝐼𝑥, 𝐽𝑦) 

+𝛽3[𝑑(𝐴𝐵𝑥, 𝐽𝑦) + 𝑑(𝑆𝑇𝑦, 𝐼𝑥)] 
+𝐹(𝑚𝑖𝑛{𝑑2(𝐼𝑥, 𝐽𝑦), 𝑑(𝐼𝑥, 𝐴𝐵𝑥). 𝑑(𝐼𝑥, 𝑆𝑇𝑦), 𝑑(𝐽𝑦, 𝑆𝑇𝑦). 𝑑(𝐽𝑦, 𝐴𝐵𝑥)}) 

 … (1) 

if 𝑑(𝐴𝐵𝑥, 𝐼𝑥) + 𝑑(𝑆𝑇𝑦, 𝐽𝑦)≠0, 𝛽𝑖 ≥ 0 (𝑖 = 1,2,3) with at least one 𝛽𝑖 non zero and 2𝛽1+𝛽2+2𝛽3 < 1 

or, 𝑑(𝐴𝐵𝑥, 𝑆𝑇𝑦) = 0   if 𝑑(𝐴𝐵𝑥, 𝐼𝑥) + 𝑑(𝑆𝑇𝑦, 𝐽𝑦) = 0 … (2) 

 

If one of the 𝐴𝐵(𝑋), 𝑆𝑇(𝑋), 𝐽(𝑋) and 𝐼(𝑋) is a 

complete subspace of 𝑋, then  

(a) (AB, I) has a coincidence point  

(b) (ST, J) has a coincidence point 
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Further, if the pairs (𝐴𝐵, 𝐼) and (𝑆𝑇, 𝐽) are 

coincidentally commuting (weakly compatible), 

then AB, ST, I and J have a unique common fixed 

point. Moreover, if the pairs (A,B), (A,I), (B,I), 

(S,T), (S,J) and (T,J) are commuting mappings 

then A, B, S, T, I and J have a unique common 

fixed point. 

Proof: Let 𝑥0 ∈ 𝑋 be an arbitrary point. Since 𝐴𝐵(𝑋) ⊂ 𝐽(𝑋), we can choose a point 𝑥1 in 𝑋 such that 

𝐴𝐵𝑥0 = 𝐽𝑥1. Again, since 𝑆𝑇(𝑋) ⊂ 𝐼(𝑋), we can choose a point 𝑥2 in 𝑋with 𝑆𝑇𝑥1 = 𝐼𝑥2.  Using this 

process repeatedly, we can construct a sequence {𝑧𝑛} such that  

𝑧2𝑛 = 𝐴𝐵𝑥2𝑛 = 𝐽𝑥2𝑛+1 and  𝑧2𝑛+1 = 𝑆𝑇𝑥2𝑛+1 = 𝐼𝑥2𝑛+2for 𝑛 = 0, 1, 2, … 

 

Now, we consider two cases 

Case I: If 𝑑(𝐴𝐵𝑥, 𝐼𝑥) + 𝑑(𝑆𝑇𝑦, 𝐽𝑦)≠0. Then on using inequality (1), we have 

𝑑(𝑧2𝑛+1 ,𝑧2𝑛+2) = 𝑑(𝑆𝑇𝑥2𝑛+1,𝐴𝐵𝑥2𝑛+2) 

  ≤ 𝛽1 [
{𝑑(𝐴𝐵𝑥2𝑛+2,𝐼𝑥2𝑛+2)}2+{𝑑(𝑆𝑇𝑥2𝑛+1,𝐽𝑥2𝑛+1)}2

𝑑(𝐴𝐵𝑥2𝑛+2,𝐼𝑥2𝑛+2)+(𝑆𝑇𝑥2𝑛+1,𝐽𝑥2𝑛+1)
] +𝛽2𝑑(𝐼𝑥2𝑛+2 , 𝐽𝑥2𝑛+1) 

 +𝛽3[(𝑑(𝐴𝐵𝑥2𝑛+2, 𝐽𝑥2𝑛+1) + 𝑑(𝑆𝑇𝑥2𝑛+1, 𝐼𝑥2𝑛+2)] 
 +𝐹[𝑚𝑖𝑛{𝑑2(𝐼𝑥2𝑛+2, 𝐽𝑥2𝑛+1 ), 

 𝑑(𝐼𝑥2𝑛+2, 𝐴𝐵𝑥2𝑛+2 ). 𝑑(𝐼𝑥2𝑛+2, 𝑆𝑇𝑥2𝑛+1), 

 𝑑(𝐽𝑥2𝑛+1 , 𝑆𝑇𝑥2𝑛+1 ). 𝑑(𝐽𝑥2𝑛+1 , 𝐴𝐵𝑥2𝑛+2)}] 

 ≤ 𝛽1
[𝑑(𝐴𝐵𝑥2𝑛+2 ,𝐼𝑥2𝑛+2) +𝑑(𝑆𝑇𝑥2𝑛+1 ,𝐽𝑥2𝑛+1)]

𝑑(𝐴𝐵𝑥2𝑛+2 ,𝐼𝑥2𝑛+2)+𝑑(𝑆𝑇𝑥2𝑛+1 ,𝐽𝑥2𝑛+1)

2
+𝛽2𝑑(𝐼𝑥2𝑛+2 , 𝐽𝑥2𝑛+1) 

 +𝛽3[𝑑(𝐴𝐵𝑥2𝑛+2, 𝐽𝑥2𝑛+1) + 𝑑(𝑆𝑇𝑥2𝑛+1, 𝐼𝑥2𝑛+2)] 
 +𝐹[𝑚𝑖𝑛{𝑑2(𝐼𝑥2𝑛+2, 𝐽𝑥2𝑛+1), 

 𝑑(𝐼𝑥2𝑛+2, 𝐴𝐵𝑥2𝑛+2). 𝑑(𝐼𝑥2𝑛+2, 𝑆𝑇𝑥2𝑛+1), 

 𝑑(𝐽𝑥2𝑛+1, 𝑆𝑇𝑥2𝑛+1). 𝑑(𝐽𝑥2𝑛+1, 𝐴𝐵𝑥2𝑛+2)}] 
 ≤ 𝛽1[𝑑(𝐴𝐵𝑥2𝑛+2 , 𝐼𝑥2𝑛+2 )+ d(𝑆𝑇𝑥2𝑛+1 , 𝐽𝑥2𝑛+1 )] 
 +𝛽2𝑑(𝐼𝑥2𝑛+2 , 𝐽𝑥2𝑛+1) 

 +𝛽3[𝑑(𝐴𝐵𝑥2𝑛+2 , 𝐽𝑥2𝑛+1 )+ d(𝑆𝑇𝑥2𝑛+1 , 𝐼𝑥2𝑛+2 )] 
 +𝐹[𝑚𝑖𝑛{𝑑2(𝐼𝑥2𝑛+2 , 𝐽𝑥2𝑛+1 ), 

 𝑑(𝐼𝑥2𝑛+2 , 𝐴𝐵𝑥2𝑛+2 ). 𝑑(𝐼𝑥2𝑛+2 , 𝑆𝑇𝑥2𝑛+1), 

 𝑑(𝐽𝑥2𝑛+1 , 𝑆𝑇𝑥2𝑛+1 ). 𝑑(𝐽𝑥2𝑛+1 , 𝐴𝐵𝑥2𝑛+2)}] 
 ≤ 𝛽1[𝑑(𝑧2𝑛+2  , 𝑧2𝑛+1)+ d(𝑧2𝑛+1  , 𝑧2𝑛)]+𝛽2𝑑(𝑧2𝑛+1  , 𝑧2𝑛) 

 +𝛽3[𝑑(𝑧2𝑛+2, 𝑧2𝑛+1) + 𝑑(𝑧2𝑛+1, 𝑧2𝑛)] 
 +𝐹[𝑚𝑖𝑛{𝑑2(𝑧2𝑛+1, 𝑧2𝑛), 𝑑(𝑧2𝑛+1, 𝑧2𝑛+2). 𝑑(𝑧2𝑛+1 , 𝑧2𝑛+1 ), 
 𝑑(𝑧2𝑛, 𝑧2𝑛+1 ). 𝑑(𝑧2𝑛, 𝑧2𝑛+2 )}] 
 ≤ (𝛽1+𝛽3) 𝑑(𝑧2𝑛+2  , 𝑧2𝑛+1)+ (𝛽1+𝛽2+𝛽3)𝑑(𝑧2𝑛 , 𝑧2𝑛+1) 

 +𝐹[𝑚𝑖𝑛{𝑑2(𝑧2𝑛+1, 𝑧2𝑛),  
 𝑑(𝑧2𝑛+1, 𝑧2𝑛+2).0, 𝑑(𝑧2𝑛, 𝑧2𝑛+1). 𝑑(𝑧2𝑛, 𝑧2𝑛+2)}] 
 

or,  𝑑(𝑧2𝑛+2  , 𝑧2𝑛+1) ≤ (
𝛽1+𝛽2+𝛽3

1-𝛽1-𝛽3
) 𝑑(𝑧2𝑛+1, 𝑧2𝑛) 

 +
1

(1−𝛽1−𝛽3)
𝐹[𝑚𝑖𝑛{𝑑2(𝑧2𝑛+1, 𝑧2𝑛), 

 0, 𝑑(𝑧2𝑛, 𝑧2𝑛+1). 𝑑(𝑧2𝑛, 𝑧2𝑛+2)}] 

 = (
𝛽1+𝛽2+𝛽3

1−𝛽1−𝛽3
) 𝑑(𝑧2𝑛+1, 𝑧2𝑛)+

1

(1−𝛽1−𝛽3)
𝐹(0) 

 

or,  𝑑(𝑧2𝑛+1  , 𝑧2𝑛+2) ≤ (
𝛽1+𝛽2+𝛽3

1−𝛽1−𝛽3
) 𝑑(𝑧2𝑛, 𝑧2𝑛+1)+0 [∵ 𝐹(0) = 0] 

 

or,  𝑑(𝑧2𝑛+1  , 𝑧2𝑛+2) ≤ (
𝛽1+𝛽2+𝛽3

1−𝛽1−𝛽3
) 𝑑(𝑧2𝑛, 𝑧2𝑛+1) 

 

Following the same process, we can show that 

 𝑑(𝑧2𝑛 , 𝑧2𝑛+1) ≤ (
𝛽1+𝛽2+𝛽3

1−𝛽1−𝛽3
) 𝑑(𝑧2𝑛−1, 𝑧2𝑛) 
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Thus, for every n, we can show that 

 𝑑(𝑧𝑛, 𝑧𝑛+1) ≤ 𝛼𝑑(𝑧𝑛−1, 𝑧𝑛) … (3) 

 

Where 𝛼 =  
𝛽1+𝛽2+𝛽3

1−𝛽1−𝛽3
< 1 

Now, by induction  

 𝑑(𝑧𝑛 , 𝑧𝑛+1) ≤ 𝛼𝑑(𝑧𝑛−1  , 𝑧𝑛) 

 ≤ 𝛼2𝑑(𝑧𝑛−2  , 𝑧𝑛−1) 

 ⋮ 
 ≤ 𝛼𝑛𝑑(𝑧0 , 𝑧1) 

 

For any 𝑚 > 𝑛, we get,  

 𝑑(𝑧𝑛, 𝑧𝑚) ≤ 𝑑(𝑧𝑛, 𝑧𝑛+1) + 𝑑(𝑧𝑛+1, 𝑧𝑛+2)+…+𝑑(𝑧𝑚−1, 𝑧𝑚) 

 ≤ [𝛼𝑛+𝛼𝑛+1+………+𝛼𝑚−1]𝑑(𝑧0 , 𝑧1) 

 ≤
𝛼𝑛

1−𝛼
𝑑(𝑧0 , 𝑧1) 

 

Now, using normality of cone, we get 

 ||𝑑(𝑧n , 𝑧𝑚)|| ≤
∝𝑛

1−∝
. 𝐾||𝑑(𝑧0 , 𝑧1)|| 

 

This implies that𝑑(𝑧n, 𝑧𝑚) → 0 as 𝑛, 𝑚 → ∞ 

Hence, sequence {𝑧𝑛} described by 
{𝐴𝐵𝑥0, 𝑆𝑇𝑥1, 𝐴𝐵𝑥2, … 𝑆𝑇𝑥2𝑛−1, 𝐴𝐵𝑥2𝑛, 𝑆𝑇𝑥2𝑛+1, … } 

 

is a Cauchy sequence in a cone metric space (𝑋, 𝑑).  Now, let 𝑆𝑇(𝑋) is a complete subspace of 𝑋, then the 

subsequence {𝑧2𝑛+1} which is contained in 𝑆𝑇(𝑋)  also get a limit 𝑧 in 𝑆𝑇(𝑋) i.e.  

 lim
𝑛→∞

𝑆𝑇 𝑥2𝑛+1 = 𝑧 

 

Since, 𝑆𝑇(𝑋) ⊂ 𝐼(𝑋), there exists a point 𝑧′ ∈ 𝑋 such that 𝐼𝑧’ = 𝑧. 

 

Again, as {𝑧𝑛} is a Cauchy sequence containing a convergent subsequence {𝑧2𝑛+1 }, therefore the sequence 
{𝑧𝑛} also converges which implies the convergence of {𝑧2𝑛} being a subsequence of the convergent sequence 
{𝑧𝑛} i.e. lim

𝑛→∞
𝐽 𝑥2𝑛+1 = 𝑧. 

To prove that 𝐴𝐵𝑧′ = 𝑧 put 𝑥 = 𝑧′ and 𝑦 = 𝑥2𝑛−1 in (1), we get  

 𝑑(𝐴𝐵𝑧′, 𝑆𝑇𝑥2𝑛−1) ≤ 𝛽1 [
{𝑑(𝐴𝐵𝑧′,𝐼𝑧′)}2+{𝑑(𝑆𝑇𝑥2𝑛−1,𝐽𝑥2n−1)}2

𝑑(𝐴𝐵𝑧′,𝐼𝑧)+𝑑(𝑆𝑇𝑥2𝑛−1,𝐽𝑥2𝑛−1)
] +𝛽2𝑑(𝐼𝑧′, 𝐽𝑥2𝑛−1) 

 +𝛽3[𝑑(𝐴𝐵𝑧′, 𝐽𝑥2𝑛−1)+ d(𝑆𝑇𝑥2𝑛−1 ,𝐼𝑧′)] 

 +𝐹[𝑚𝑖𝑛{𝑑2(𝐼𝑧′, 𝐽𝑥2𝑛−1), 
 𝑑(𝐼𝑧′, 𝐴𝐵𝑧′). 𝑑(𝐼𝑧′, 𝑆𝑇𝑥2𝑛−1), 

 𝑑(𝐽𝑥2𝑛−1 ,𝑆𝑇𝑥2𝑛−1). 𝑑(𝐽𝑥2𝑛−1 , 𝐴𝐵𝑧′)}] 

on letting  𝑛 → ∞, above reduces to 

𝑑(𝐴𝐵𝑧′, 𝑧) ≤ 𝛽1 [
{𝑑(𝐴𝐵𝑧′, 𝑧)}2 + {𝑑(𝑧, 𝑧)}2

𝑑(𝐴𝐵𝑧′, 𝑧)  +  𝑑(𝑧, 𝑧)
] +𝛽2𝑑(𝑧, 𝑧)+𝛽3[𝑑(𝐴𝐵𝑧′, 𝑧)+ d(𝑧, 𝑧)] 

 +𝐹[𝑚𝑖𝑛{𝑑2(𝑧, 𝑧) , 𝑑(𝑧, 𝐴𝐵𝑧′). 𝑑(𝑧, 𝑧), 𝑑(𝑧, 𝑧). 𝑑(𝑧, 𝐴𝐵𝑧′)}] 
 ≤ 𝛽1𝑑(𝐴𝐵𝑧′, 𝑧)+𝛽3𝑑(𝐴𝐵𝑧′, 𝑧) 

 +𝐹[𝑚𝑖𝑛{0,𝑑(𝑧, 𝐴𝐵𝑧′). 0,0. 𝑑(𝑧, 𝐴𝐵𝑧′)}] 
 ≤ (𝛽1+𝛽3)𝑑(𝐴𝐵𝑧′, 𝑧) + 𝐹(0) 

or,  𝑑(𝐴𝐵𝑧′, 𝑧)  ≤ (𝛽1 + 𝛽3) 𝑑(𝐴𝐵𝑧′, 𝑧) [∵ 𝐹(0) = 0] 
which gives𝐴𝐵𝑧′ = 𝑧  [by using Remark (1.16)]. 

 

Thus, we get𝐴𝐵𝑧′ = 𝐼𝑧′ = 𝑧and result (a) is established i.e the pair (𝐴𝐵, 𝐼) has a coincidence point.  
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Since 𝑧 is in the range of AB  i.e. 𝐴𝐵𝑧′ = z and 𝐴𝐵(𝑋) ⊂ 𝐽(𝑋) there always exists a point z" such that 𝐽𝑧" =
z 

Now, 𝑑(𝑧, 𝑆𝑇𝑧") = 𝑑(𝐴𝐵𝑧′, 𝑆𝑇𝑧") 

 ≤ 𝛽1 [
{𝑑(𝐴𝐵𝑧′,𝐼𝑧′)}

2
+{𝑑(𝑆𝑇z,  Jz)}2

𝑑(𝐴𝐵𝑧′,𝐼𝑧′) + 𝑑(𝑆𝑇𝑧",𝐽𝑧")
] + 𝛽2𝑑(𝐼𝑧′, 𝐽z") 

 +𝛽3𝑑(𝐴𝐵𝑧′, 𝐽𝑧") + 𝑑(𝑆𝑇z", 𝐼𝑧′) 

 +𝐹[𝑚𝑖𝑛{𝑑2(𝐼𝑧′, 𝐽z"), 𝑑(𝐼𝑧′, 𝐴𝐵𝑧′). 𝑑(𝐼𝑧′, 𝑆𝑇z"),  
 𝑑(𝐽z", 𝑆𝑇z"). 𝑑(𝐽z", 𝐴𝐵𝑧′)}] 

 ≤ 𝛽1 [
{d(z,z)}2+{𝑑(𝑆𝑇z",𝑧)}2

𝑑(𝑧,𝑧) + 𝑑(𝑆𝑇z",𝑧)
] +𝛽2𝑑(𝑧, 𝑧) +𝛽3[𝑑(𝑧, 𝑧) +d(𝑆𝑇z", 𝑧)] 

 +𝐹[𝑚𝑖𝑛{𝑑2(𝑧, 𝑧), 𝑑(𝑧, 𝑧). 𝑑(𝑧, 𝑆𝑇z"), 𝑑(𝑧, 𝑆𝑇z"). 𝑑(𝑧, 𝑧)}] 
 ≤ (𝛽1+𝛽3) 𝑑(𝑧, 𝑆𝑇z") + 𝐹[𝑚𝑖𝑛{0,0, 0}] 
or,  𝑑(𝑧, 𝑆𝑇z") ≤ (𝛽1+𝛽3)𝑑(𝑧, 𝑆𝑇z") + 𝐹(0) 

or, 𝑑(𝑧, 𝑆𝑇z") ≤ (𝛽1+𝛽3) + 𝑑(𝑧, 𝑆𝑇z")[∵ 𝐹(0) = 0] 
which implies that 𝑆𝑇𝑧" = 𝑧 = 𝐽𝑧" i.e. the pair (𝑆𝑇, 𝐽) has  a coincidence point.  

This establishes the result (b).  

 

If we assume that 𝐼(𝑋) is a complete subspace of 

𝑋, then similar arguments establish results (a) and 

(b). The remaining two cases pertain essentially to 

the previous cases.  

Infact, if 𝑆𝑇(𝑋) is complete then 𝑧 ∈ 𝑆𝑇(𝑋) ⊂
𝐼(𝑋) and if 𝐴𝐵(𝑋) is complete, then,   

 𝑧 ∈ 𝐴𝐵(𝑋) ⊂ 𝐽(𝑋). 

 Thus, the results (a) and (b) are completely 

established. 

 

Furthermore, if the pairs (𝐴𝐵, 𝐼) and (𝑆𝑇, 𝐽) are coincidentally commuting at 𝑧′ and 𝑧"  respectively then 

(i) 𝑧 = 𝐴𝐵𝑧′ = 𝐼𝑧′ = 𝑆𝑇𝑧" = 𝐽𝑧" 

(ii) 𝐴𝐵𝑧 = 𝐴𝐵(𝐼𝑧′) = 𝐼(𝐴𝐵𝑧′) = 𝐼𝑧 

(iii) 𝑆𝑇𝑧 = 𝑆𝑇(𝐽𝑧") = 𝐽(𝑆𝑇𝑧") = 𝐽𝑧 

Since, 𝑑(𝐴𝐵𝑧′, 𝐼𝑧′) + 𝑑(𝑆𝑇𝑧, 𝐽𝑧) = 0 

Therefore, by (2), we get 𝑑(𝐴𝐵𝑧′, 𝑆𝑇𝑧) = 𝑑(𝑧, 𝑆𝑇𝑧) = 0 

or, 𝑧 = 𝑆𝑇𝑧. 

Similarly, 𝑑(𝐴𝐵𝑧, 𝐼𝑧) + 𝑑(𝑆𝑇𝑧", 𝐽𝑧") = 0, therefore by (2), we get 

 𝑑(𝐴𝐵𝑧, 𝑆𝑇𝑧") = 𝑑(𝐴𝐵𝑧, 𝑧) = 0 

or, 𝑧 = 𝐴𝐵𝑧. 

Thus, 𝐴𝐵𝑧 = 𝐼𝑧 = 𝑆𝑇𝑧 = 𝐽𝑧 = 𝑧, which shows that 𝑧 is a common fixed point of AB, ST, I and J.  

 

To show that 𝑧 is unique, let 𝑢 be another fixed point of I, J, AB and ST. Then,  

  𝑑(𝑧, 𝑢) = 𝑑(𝐴𝐵𝑧, 𝑆𝑇𝑢) 

 ≤ 𝛽1 [
{𝑑(𝐴𝐵𝑧,𝐼𝑧)}2

 +{𝑑(𝑆𝑇𝑢,𝐽𝑢)}2

𝑑(𝐴𝐵𝑧,𝐼𝑧) + 𝑑(𝑆𝑇𝑢,𝐽𝑢)
] +𝛽2𝑑(𝐼𝑧, 𝐽𝑢) 

 +𝛽3[𝑑(𝐴𝐵𝑧, 𝐽𝑢)+d(𝑆𝑇𝑢, 𝐼𝑧)] 
 +𝐹[𝑚𝑖𝑛{𝑑2(𝐼𝑧, 𝐽𝑢), 𝑑(𝐼𝑧, 𝐴𝐵𝑧). 𝑑(𝐼𝑧, 𝑆𝑇𝑢), 

 𝑑(𝐽𝑢, 𝑆𝑇𝑢). 𝑑(𝐽𝑢, 𝐴𝐵𝑧)}] 

 ≤ 𝛽1 [
{𝑑(𝐴𝐵𝑧,𝐼𝑧)+𝑑(𝑆𝑇𝑢,𝐽𝑢)}2

𝑑(𝐴𝐵𝑧,𝐼𝑧) + 𝑑(𝑆𝑇𝑢,𝐽𝑢)
] +𝛽2𝑑(𝐼𝑧, 𝐽𝑢) 

 +𝛽3[𝑑(𝐴𝐵𝑧, 𝐽𝑢) +d(𝑆𝑇𝑢, 𝐼𝑧)] +𝐹[𝑚𝑖𝑛{𝑑2(𝐼𝑧, 𝐽𝑢), 𝑑(𝐼𝑧, 𝐴𝐵𝑧). 𝑑(𝐼𝑧, 𝑆𝑇𝑢), 

 𝑑(𝐽𝑢, 𝑆𝑇𝑢). 𝑑(𝐽𝑢, 𝐴𝐵𝑧)}] 
 ≤ 𝛽1[𝑑(𝐴𝐵𝑧, 𝐼𝑧)+ d (𝑆𝑇𝑢, 𝐽𝑢)]+𝛽2𝑑(𝐼𝑧, 𝐽𝑢) 

 +𝛽3[𝑑(𝐴𝐵𝑧, 𝐽𝑢) +d(𝑆𝑇𝑢, 𝐼𝑧)] 
 +𝐹[𝑚𝑖𝑛{𝑑2(𝐼𝑧, 𝐽𝑢), 𝑑(𝐼𝑧, 𝐴𝐵𝑧). 𝑑(𝐼𝑧, 𝑆𝑇𝑢), 
 𝑑(𝐽𝑢, 𝑆𝑇𝑢). 𝑑(𝐽𝑢, 𝐴𝐵𝑧)}] 
 ≤ (𝛽2+2𝛽3)𝑑(𝑧, 𝑢) 

 +𝐹[𝑚𝑖𝑛{𝑑2(𝑧, 𝑢), 𝑑(𝑧, 𝑧). 𝑑(𝑧, 𝑢), 𝑑(𝑢, 𝑢). 𝑑(𝑢, 𝑧)}] 
 ≤ (𝛽2+2𝛽3)𝑑(𝑧, 𝑢) + 𝐹[𝑚𝑖𝑛{𝑑2(𝑧, 𝑢), 0, 0}] 
 ≤ (𝛽2+2𝛽3)𝑑(𝑧, 𝑢) + 𝐹(0) 
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 ≤ (𝛽2+2𝛽3)𝑑(𝑧, 𝑢) [∵ 𝐹(0) = 0] 
yielding, thereby 𝑧 = 𝑢.  

 

Thus, 𝑧 is a unique common fixed point of AB, ST, I and J. 

Finally, we prove that 𝑧 is also a common fixed point A,B, S,T, I and J. For this, let both the pairs (AB, I) and 

(ST, J) have a unique common fixed point 𝑧. 

Then  𝐴𝑧 = 𝐴(𝐴𝐵𝑧) = 𝐴(𝐵𝐴𝑧) = 𝐴𝐵(𝐴𝑧) 

 𝐴𝑧 = 𝐴(𝐼𝑧) = I(Az) 

 𝐵𝑧 = 𝐵(𝐴𝐵𝑧) = 𝐵(𝐴(𝐵𝑧)) = 𝐵𝐴(𝐵𝑧) = 𝐴𝐵(𝐵𝑧) 

 𝐵𝑧 = 𝐵(𝐼𝑧) = 𝐼(𝐵𝑧) 

 

which shows that (AB, I) has common fixed points, which are 𝐴𝑧 and 𝐵𝑧. We get thereby, 𝐴𝑧 = 𝑧 = 𝐵𝑧 =
𝐼𝑧 = 𝐴𝐵𝑧, by virtue of uniqueness of common fixed point of pair  (AB, I). 

Similarly, using the commutativity of (S,T), (S,J) and (T,J),  

 𝑆𝑧 = 𝑧 = 𝑇𝑧 = 𝐽𝑧 = 𝑆𝑇𝑧 can be shown. 

 

Now, to show  that Az = Sz (Bz = Tz), we have 

 𝑑(𝐴𝑧, 𝑆𝑧) = 𝑑(𝐴(𝐵𝐴𝑧), 𝑆(𝑇𝑆𝑧)) = 𝑑(𝐴𝐵(𝐴𝑧), 𝑆𝑇(𝑆𝑧)) 

 ≤ 𝛽1 [
{𝑑(𝐴𝐵(𝐴𝑧),𝐼(𝐴𝑧))}

2
+{𝑑(𝑆𝑇(𝑆𝑧),𝐽(𝑆𝑧))}

2

𝑑(𝐴𝐵(𝐴𝑧),𝐼(𝐴𝑧))+𝑑(𝑆𝑇(𝑆𝑧),𝐽(𝑆𝑧))
] 

 +𝛽2𝑑(𝐼(𝐴𝑧), 𝐽(𝑆𝑧)) 

 +𝛽3[𝑑(𝐴𝐵(𝐴𝑧), 𝐽(𝑆𝑧)) + 𝑑(𝐼(𝐴𝑧), 𝑆𝑇(𝑆𝑧))] 

 +𝐹[𝑚𝑖𝑛{𝑑2(𝐼(𝐴𝑧), 𝐽(𝑆𝑧)), 

 𝑑(𝐼(𝐴𝑧), 𝐴𝐵(𝐴𝑧)). 𝑑(𝐼(𝐴𝑧), 𝑆𝑇(𝑆𝑧)), 

 𝑑(𝐽(𝑆𝑧), 𝑆𝑇(𝑆𝑧)). 𝑑(𝐽(𝑆𝑧), 𝐴𝐵(𝐴𝑧))}] 

 

which implies that 𝑑(𝐴𝑧, 𝑆𝑧) = 0 

(as 𝑑(𝐴𝐵(𝐴𝑧), 𝐼(𝐴𝑧)) + 𝑑(𝑆𝑇(𝑆𝑧), 𝐽(𝑆𝑧)) = 0), using condition (2), thereby we get 𝐴𝑧 = 𝑆𝑧. 

Similarly, 𝐵𝑧 = 𝑇𝑧can be shown.  

Hence, 𝑧 is a unique common fixed point of A, B, S, T, I and J. 

 

Case II:Let 𝑑(𝐴𝐵𝑥, 𝐼𝑥) + 𝑑(𝑆𝑇𝑦, 𝐽𝑦) = 0 implies that 𝑑(𝐴𝐵𝑥, 𝑆𝑇𝑦) = 0. Then we argue as follows: 

Here we show that if 𝑦𝑛 = 𝑦𝑛+1 for some 𝑛, then AB, ST, I and J have a common fixed point. 

Suppose that there exists as 𝑛 such that  𝑧𝑛 = 𝑧𝑛+1. Then also 𝑧𝑛+1 = 𝑧𝑛+2. 

For if, 𝑧𝑛+1 ≠ 𝑧𝑛+2, then from (3), with 𝑛 replaced by 𝑛 + 1, we get, 

 0 < 𝑑(𝑧𝑛+1, 𝑧𝑛+2) = 0 a contradiction, gives 𝑧𝑛+1 = 𝑧𝑛+2.  

Thus, 𝑧𝑛 = 𝑧𝑛+𝛼 for  𝛼 = 1,2, … 

 

If follows that there exists two points 𝑢1 and 𝑢2 such that 𝑣1 = 𝐴𝐵𝑢1 = 𝐼𝑢1 and 𝑣2 = 𝑆𝑇𝑢2 = 𝐽𝑢2. Since 

𝑑(𝐴𝐵𝑢1, 𝐼𝑢1) + 𝑑(𝑆𝑇𝑢2, 𝐽𝑢2) = 0 then from (2), we get 

𝑑(𝐴𝐵𝑢1, 𝑆𝑇𝑢2) = 0 i.e 𝑣1 = 𝐴𝐵𝑢1 = 𝑆𝑇𝑢2 = 𝑣2 

Also, note that 𝐼𝑣1 = 𝐼(𝐴𝐵𝑢1) = 𝐴𝐵(𝐼𝑢1) = 𝐴𝐵𝑣1. 

Similarly, 𝐽𝑣2 = 𝐽(𝑆𝑇𝑢2) = 𝑆𝑇(𝐽𝑢2) = 𝑆𝑇𝑣2. 

Define𝑦1 = 𝐴𝐵𝑣1 , 𝑦2 = 𝑆𝑇𝑣2 

Since 𝑑(𝐴𝐵𝑣1, 𝐼𝑣1) + 𝑑(𝑆𝑇𝑣2, 𝐽𝑣2) = 0 it follows from (2) that  

 𝑑(𝐴𝐵𝑣1, 𝑆𝑇𝑣2) = 0 

or,  𝐴𝐵𝑣1 = 𝑆𝑇𝑣2 i.e 𝑦1 = 𝑦2.  

Thus  𝐴𝐵𝑣1 = 𝐼𝑣1 = 𝑆𝑇𝑣2 = 𝐽𝑣2 

 

But, 𝑣1 = 𝑣2, therefore AB, I, ST and J have a common coincidence point.  
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Define 𝑢 = 𝐴𝐵𝑣1, which asserts that 𝑢 is also a common point of coincidence  of AB, ST, I and J. If 𝐴𝐵𝑢 ≠
𝐴𝐵𝑣1 = 𝑆𝑇𝑣1, then 𝑑(𝐴𝐵𝑢, 𝑆𝑇𝑣1) > 0 but since 𝑑(𝐴𝐵𝑢, 𝐼𝑢) + 𝑑(𝑆𝑇𝑣1, 𝐽𝑣1) = 0, it follows from (2) that 

(𝐴𝐵𝑢, 𝑆𝑇𝑣1) = 0, i.e 𝐴𝐵𝑢 = 𝑆𝑇𝑣1  which is a contradiction. Therefore, 𝐴𝐵𝑢 = 𝐴𝐵𝑣1 = 𝑢 and 𝑢 is a  

 

common fixed point of AB, ST, I and J. 

The rest of the proof is identical to the case(I), hence it is omitted.  

This completes the proof. 

 

If we put 𝐹(𝑡) = 0 for all 𝑡 ∈ 𝑅+ in theorem (2.1), we obtain the following, which generalize the result of 

Imdad and Ali [3] in cone metric space for six mappings. 

Corollary 2.2.  Let (𝑋, 𝑑) be a complete cone metric space and 𝑃 be a normal cone with normal constant 𝐾. 

Let A, B, S, T, I and J be self-mappings of a cone metric space (𝑋, 𝑑) satisfying 𝐴𝐵(𝑋) ⊂ 𝐽(𝑋), 𝑆𝑇(𝑋) ⊂
𝐼(𝑋) such that for each 𝑥, 𝑦 ∈ 𝑋 either  

 𝑑(𝐴𝐵𝑥, 𝑆𝑇𝑦)≤ 𝛽1 [
{𝑑(𝐴𝐵𝑥,𝐼𝑥)}2+{𝑑(𝑆𝑇𝑦,𝐽𝑦)}2

𝑑(𝐴𝐵𝑥,𝐼𝑥)+𝑑(𝑆𝑇𝑦,𝐽𝑦)
] +𝛽2𝑑(𝐼𝑥, 𝐽𝑦) 

 +𝛽3[𝑑(𝐴𝐵𝑥, 𝐽𝑦) + 𝑑(𝑆𝑇𝑦, 𝐼𝑥)] 
if 𝑑(𝐴𝐵𝑥, 𝐼𝑥) + 𝑑(𝑆𝑇𝑦, 𝐽𝑦)≠0, 𝛽𝑖 ≥ 0 (𝑖 = 1,2,3) with at least one 𝛽𝑖 non zero and 2𝛽1+𝛽2+2𝛽3 < 1 

or,  𝑑(𝐴𝐵𝑥, 𝑆𝑇𝑦) = 0   if 𝑑(𝐴𝐵𝑥, 𝐼𝑥) + 𝑑(𝑆𝑇𝑦, 𝐽𝑦) = 0  

 

If one of the 𝐴𝐵(𝑋), 𝑆𝑇(𝑋), 𝐽(𝑋) and 𝐼(𝑋) is a complete subspace of 𝑋, then  

(a) (AB, I) has a coincidence point  

(b) (ST, J) has a coincidence point 

 

Further, if the pairs (𝐴𝐵, 𝐼) and (𝑆𝑇, 𝐽) are coincidentally commuting (weakly compatible), then AB, ST, I 

and J have a unique common fixed point. Moreover, if the pairs (A,B), (A,I), (B,I), (S,T), (S,J) and (T,J) are 

commuting mappings then A, B, S, T, I and J have a unique common fixed point. 

 

Putting 𝐴𝐵 = 𝐴, 𝑆𝑇 = 𝐵 in corollary (2.2), we obtain the following generalization of the result of Imdad and 

Ali [3] in cone metric space.  

 

Corollary 2.3:Let (𝑋, 𝑑) be a complete cone metric space and 𝑃 be a normal cone with normal constant 𝐾. 

Let  A, B, S and T be self-mappings of a cone metric space (𝑋, 𝑑) with 𝐴(𝑋) ⊂ 𝑇(𝑋)and 𝐵(𝑋) ⊂ 𝑆(𝑋) such 

that for each 𝑥, 𝑦 ∈ 𝑋 either  

 𝑑(𝐴𝑥, 𝐵𝑦) ≤ 𝛽1 [
{𝑑(𝐴𝑥,𝑆𝑥)}2+{𝑑(𝐵𝑦,𝑇𝑦}2

𝑑(𝐴𝑥,𝑆𝑥)+d(𝐵𝑦,𝑇𝑦)
] + 𝛽2 𝑑(𝑆𝑥, 𝑇𝑦) 

 +𝛽3[𝑑(𝐴𝑥, 𝑇𝑦) + 𝑑(𝐵𝑥, 𝑆𝑥)] 
 

If 𝑑(𝐴𝑥, 𝑆𝑥) + 𝑑(𝐵𝑦, 𝑇𝑦) ≠ 0, 𝛽𝑖 ≥  0 (𝑖 = 1,2,3) (with at least one 𝛽𝑖 non zero) and 2𝛽1 + 𝛽2 + 2𝛽3 < 1or 

𝑑(𝐴𝑥, 𝐵𝑦) = 0 whereever 

𝑑(𝐴𝑥, 𝑆𝑥) + 𝑑(𝐵𝑦, 𝑇𝑦) = 0. 

 

If one of 𝐴(𝑋), 𝐵(𝑋), 𝑆(𝑋) and 𝑇(𝑋)is a complete subspace of 𝑋, then  

(a) (A,S)has a coincidence point  

(b) (B,T)has a coincidence point 

 

Further, if the pairs (A,S) and (B,T) are coincidentally commuting then A, B, S and T has a unique fixed 

point 𝑧. 

On the basis of the above corollary (2.2), we have the following result of Singh et al. [19], whose proof is 

similar to that of corollary (2.2). 

 

Corollary 2.4:  Let (𝑋, 𝑑) be a complete cone metric space and 𝑃 be a normal cone with normal constant 𝐾. 

Let A, B, S, T, I and J be self-mappings of a cone metric space (𝑋, 𝑑) satisfying 𝐴𝐵(𝑋) ⊂ 𝐽(𝑋), 𝑆𝑇(𝑋) ⊂
𝐼(𝑋) such that for each 𝑥, 𝑦 ∈ 𝑋.   

 𝑑(𝐴𝐵𝑥, 𝑆𝑇𝑦)≤ 𝛽1[𝑑(𝐴𝐵𝑥, 𝐼𝑥)+𝑑(𝑆𝑇𝑦, 𝐽𝑦)]+𝛽2𝑑(𝐼𝑥, 𝐽𝑦) 
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 +𝛽3[𝑑(𝐴𝐵𝑥, 𝐽𝑦) + 𝑑(𝑆𝑇𝑦, 𝐼𝑥)] 
where  𝛽𝑖 ≥ 0, (𝑖 = 1,2,3) (with at least one 𝛽𝑖  non zero) and 2𝛽1+𝛽2+2𝛽3 < 1 

 

If one of the 𝐴𝐵(𝑋), 𝑆𝑇(𝑋), 𝐽(𝑋) and 𝐼(𝑋) is a complete subspace of 𝑋, then  

(a) (AB, I) has a coincidence point  

(b) (ST, J) has a coincidence point 

 

Further, if the pairs (AB, I) and (ST, J) are coincidentally commuting (weakly compatible), then AB, ST, I 

and J have a unique common fixed point.  

Moreover, if the pairs (A,B), (A,I), (B,I), (S,T), (S,J) and (T,J) are commuting mappings then A, B, S, T, I 

and J have a unique common fixed point. 

Proof: Since 
[𝑑(𝐴𝐵𝑥, 𝐼𝑥)]2 + [𝑑(𝑆𝑇𝑦, 𝐽𝑦)]2

𝑑(𝐴𝑥, 𝐹𝑥) + 𝑑(𝑆𝑦, 𝐺𝑦)
≤

[𝑑(𝐴𝐵𝑥, 𝐼𝑥) + 𝑑(𝑆𝑇𝑦, 𝐽𝑦)]2

𝑑(𝐴𝑥, 𝐹𝑥) + 𝑑(𝑆𝑦, 𝐺𝑦)
=  𝑑(𝐴𝐵𝑥, 𝐼𝑥)+ 𝑑(𝑆𝑇𝑦, 𝐽𝑦) 

 

Using above inequality in main Theorem (2.1), we get the corollary (2.4). 

Taking 𝐴𝐵 = 𝐴, 𝑆𝑇 = 𝐵, 𝐼 = 𝐽 = 𝑆 in corollary (2.4), we obtain the following result of Olaleru [17]. 

 

Corollary 2.5:  Let (𝑋, 𝑑) be a complete cone metric space and 𝑃 be a normal cone with normal constant 𝐾. 

Let A, B and S be self-mappings of a cone metric space (𝑋, 𝑑) satisfying 𝐴(𝑋) ⊂ 𝑆(𝑋), 𝐵(𝑋) ⊂ 𝑆(𝑋) such 

that for each 𝑥, 𝑦 ∈ 𝑋.   

 𝑑(𝐴𝑥, 𝐵𝑦)≤ 𝛽1[𝑑(𝐴𝑥, 𝑆𝑥)+𝑑(𝐵𝑦, 𝑆𝑦)]+𝛽2𝑑(𝑆𝑥, 𝑆𝑦) 

 +𝛽3[𝑑(𝐴𝑥, 𝑆𝑦) + 𝑑(𝐵𝑦, 𝑆𝑥)] 
where  𝛽𝑖 ≥ 0, (𝑖 = 1,2,3) (with at least one 𝛽𝑖  non zero) and 2𝛽1+𝛽2+2𝛽3 < 1 

 

If one of the 𝐴(𝑋), 𝐵(𝑋)and𝑆(𝑋)is a complete subspace of 𝑋, then the pair (AB,S)have unique coincidence 

point. 

 

Further, if the pairs (A, S) and (B, S) are coincidentally commuting (weakly compatible), then A, B and S 

have a unique common fixed point.  

Now, we furnish an example to demonstrate the validity of the hypothesis of our Corollary(2.2). 

 

Example 2.6: Consider 𝑋 = [0,1] with the usual metric defined by  

 𝑑(𝑥, 𝑦) = ‖𝑥 − 𝑦‖ = |𝑥 − 𝑦| and 𝐹 = 𝑅 = Real Banach space. 

Define self mappings A, B, S, T, I and J on 𝑋 by  

 𝐴𝑥 =
3𝑥

8
, 𝐵𝑥 =

4𝑥

10
, 𝑆𝑥 =

𝑥

5
, 𝑇𝑥 =

5𝑥

12
, 𝐼𝑥 =

3𝑥

20
, 𝐽𝑥 =

𝑥

3
 

Here,  𝐴𝐵𝑥 = 𝐴 (
4𝑥

10
) =

3

8
(

4𝑥

10
) =

3

20
𝑥 

 𝑆𝑇𝑥 = 𝑆 (
5𝑥

12
) =

1

5
(

5𝑥

12
) =

𝑥

12
 

∴ 𝐴𝐵(𝑋) = [0,
3

20
] ⊂ [0,

1

3
] = 𝐽(𝑋) 

 𝑆𝑇(𝑋) = [0,
1

12
] ⊂ [0,

3

20
] = 𝐼(𝑋) 

or, 𝐴𝐵(𝑋) ⊂ 𝐽(𝑋) and 𝑆𝑇(𝑋) ⊂ 𝐼(𝑋) 

 

Here all the contractive condition of the Corollary (2.2) are satisfied. Hence, mappings A, B, S, T, I and J 

have a unique common fixed point at 𝑥 = 0. 

Now, we furnish an example to demonstrate the validity of the hypothesis of our corollary (2.3). 

 

Example 2.7: Consider 𝑋 = [0,8] with the usual metric defined by  

𝑑(𝑥, 𝑦) = ‖𝑥 − 𝑦‖ = |𝑥 − 𝑦| and 𝐹 = 𝑅 = Real Banach space. 

 

Define self mappings A, B, S and T on 𝑋 as 

𝐴0 = 0,   𝐴𝑥 = 1,   0 < 𝑥 ≤ 8 
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𝐵0 = 0,    𝐵𝑥 = 1,   0 < 𝑥 < 8,   𝐵8 = 0 

𝑆0 = 0,   𝑆𝑥 = 7,   0 < 𝑥 < 8,   𝑆8 = 4 

𝑇0 = 0,   𝑇𝑥 = 8,   0 < 𝑥 < 8,   𝑇8 = 1 

 

Here all the four maps in this example are discontinuous even at their unique common fixed point 0. 

Here, 𝐴(𝑋) = {0,1} ⊂ 𝑇(𝑋) = {0,1,8} 

And 𝐵(𝑋) = {0,4} ⊂ 𝑆(𝑋) = {0,4,7} 

 

Also, the pair (𝐴, 𝑆) and (𝐵, 𝑇) are coincidentally commuting at 𝑥 = 0 which is their common coincidence 

point. 

i.e.  𝐴0 = 𝑆0 ⇒ 𝐴𝑆0 = 𝑆𝐴0 

 𝐵0 = 𝑇0 ⇒ 𝐵𝑇0 = 𝑇𝐵0 

 

By a routine calculation, we can verify that all the contractive conditions of corollary (2.3) are satisfied for 

𝛽1 =
1

20
, 𝛽2 =

1

10
 and 𝛽3 =

3

8
. (2𝛽1 + 𝛽2 + 2𝛽3 = 0.95 < 1). 

 

4.4  CONCLUSION: 

Non convex analysis, especially ordered normed 

spaces, normal cones and topical functions have 

some applications in optimization theory. In these 

cases, an order  introduced by using vector space 

cones. Huang and Zhang [8] used this approach 

and they replaced the set of real numbers by an 

ordered Banach space and defined cone metric 

space which is generalization of metric space. In 

this paper, we obtain some common fixed point 

theorems for six mappings satisfying the different 

contractive conditions. Common fixed point 

results for weakly compatible maps which are 

more general than compatible mappings are 

obtained in the setting of cone metric spaces 

without requirement of the notion of continuity. 

Our results generalize, improve and extend the 

results of Goyal( [3],[4]) Goyal and 

Gupta([5],[6])Imdad and Ali [3], Jeong and 

Rhoades [10] and others. In this way we can see 

that our result is superior to many other results.  
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