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Abstract  

 Millions of people all over the world suffer with AD, a kind of neurodegenerative illness. 

Classifying Alzheimer's disease accurately and early is crucial for optimal intervention and care. Medical 

image analysis, and notably Alzheimer's disease (AD) categorization, has seen significant success using 

deep learning algorithms. Using Capsule Networks (CapsNets) and sparse representation on MRI brain 

images, this study proposes an effective classification method for Alzheimer's disease. The proposed 

technique includes two steps. MRI brain image features are extracted using the CapsNets architecture in 

the initial stage. CapsNets are renowned for their ability to capture hierarchical relationships and preserve 

spatial information, which makes them appropriate for analyzing complex medical images. The learnt 

features are input into a sparse representation-based classifier in the second stage. Sparse representation 

has been utilized extensively in image classification tasks because it can represent data using a sparse 

combination of basis vectors, thereby enhancing discriminative power. To test the efficacy of the 

proposed technique, experiments are done using a publicly available MRI dataset consisting of AD 

patients and healthy controls. The proposed method outperforms several state-of-the-art classification 

techniques, as shown by its superior classification accuracy. The combination of CapsNets and sparse 

representation enables efficient feature extraction and robust classification, contributing to accurate AD 

diagnosis. 

Keywords: Alzheimer's disease, a neurodegenerative disorder, deep learning, medical image analysis, 

AD classification, Capsule Networks, CapsNets, sparse representation, MRI brain images. 

 

I. INTRODUCTION  

 Progressive cognitive decline and memory loss are hallmarks of AD, a neurodegenerative ailment 

that mostly affects the elderly [1]. Early and accurate diagnosis is becoming more and more crucial for 
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establishing successful treatment and intervention methods for AD as its incidence rises across the globe 

[2].  

 Deep learning has emerged as a potent instrument for medical image analysis in recent years, 

offering new avenues for automated and efficient AD classification [3-4]. With their ability to learn 

hierarchical representations from raw data, deep learning models have demonstrated promising results in 

various medical imaging tasks, including AD classification [5]. CNNs have been applied extensively to 

MRI-based AD classification, obtaining remarkable accuracy [6]. Meaningful spatial relationships 

between image elements, which are essential for analyzing complex structures such as the brain, are 

frequently overlooked by CNNs [7]. 

 This study proposes an efficient method for AD classification using Capsule Networks 

(CapsNets) and sparse representation on MRI brain images. CapsNets seek to surmount the limitations of 

conventional CNNs by encoding hierarchical relationships and preserving spatial information [8]. 

CapsNets utilize "capsules," clusters of neurons that encode particular input properties, such as pose, 

presence, and instantiation parameters [9]. This dynamic routing mechanism enables CapsNets to learn 

and represent complex spatial relationships efficiently, making them ideal for analyzing complex brain 

structures in AD classification [10]. 

 In addition to CapsNets, sparse representation is incorporated into the classification procedure in 

this study [11]. Since sparse representation-based approaches may represent data as a linear combination 

of a collection of basis vectors [12], they have found widespread application in picture classification 

applications. This method increases the discriminative power of the learned representations by promoting 

sparsity and capturing the intrinsic data characteristics [13]. By integrating CapsNets and sparse 

representation, the proposed method seeks to increase AD classification accuracy [14] by leveraging the 

strengths of both techniques. 

 The proposed method employs a two-stage structure. In the initial phase, MRI brain images are 

fed into the CapsNets architecture, which derives discriminative features by modelling the spatial 

relationships between various brain regions [15]. The capsule-based representation provides a more 

robust encoding of the structural information present in the images, incorporating both global and local 

characteristics [16]. In the second stage, the learned features are passed to a sparse representation-based 

classifier, which represents the features using a sparse combination of basis vectors and conducts AD 

classification based on this representation [17]. 

 Extensive tests are performed on an MRI dataset of AD patients and healthy controls that is 

accessible to the public in order to assess the efficacy of the suggested strategy [18]. The results indicate 

that the proposed procedure outperforms some contemporary techniques. By combining CapsNets and 

sparse representation, the proposed method obtains high classification accuracy, contributing to a more 

precise diagnosis of AD. In addition to analyzing classification performance, the proposed method's 

computational efficacy is also examined [19]. Using computational resources efficiently is essential for 

the clinical application of deep learning models [20]. 

II. BACKGROUND STUDY  

 Akhila D Bet al. [1] We used Elman back propagation to the problem of multimodal feature 

classification in the context of Alzheimer's disease diagnosis in this study. Affine transform was utilized 

to combine data from two sources, PET and MRI, for classification purposes. The performance is 

measured after GLCM feature extraction and Elman BP network classification. Our suggested strategy 

yields better performance, making it more applicable to real-world settings and improving the precision 

with which AD is diagnosed. In the future, we want to expand our data set size and work with a more 

sophisticated neural network. 
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 Baskar, D.et al. [3] In this research, we provide a completely automated, highly dependable 

method for enhanced categorization of individuals with brain illness, especially Alzheimer's disease. This 

neurodegenerative disease poses serious threats to public health. Brain pictures with HC and PCC were 

analyzed using the AAL method to isolate regions of interest (ROI). During feature extraction, HC and 

PCC are activated across three brain planes to obtain crucial texture and shape features. Nearly 19 AD-

related features are reduced for final selection using a multi-criterion technique. 

 Ding, X.et al. [5] Finally, we offer a hybrid computational strategy to efficiently identify critical 

aspects across heterogeneous coarse-grained data regarding Alzheimer's disease severity. Multiple 

Bayesian networks may represent the links between the recognized data components at various periods to 

determine their probability associations. Disease severity categorization may exploit these primary data 

elements and their associations. 

 Kruthika, K.et al. [8] This research aimed to identify more effective biomarkers (features) of AD 

in brain MRI images using a multistage classification approach for diagnosis and picture retrieval. This 

research used the swarm intelligence technology - PSO for feature selection to depict the structural 

change in the brain that is associated with the clinical progression of AD. Different MRI feature sets were 

used to evaluate the feature selection technique, including cortical thickness data, volume characteristics, 

and a hybrid of the two. 

 Nancy Noella, R. S., & Priyadarshini, J. [10] The planned effort focuses on diagnosing patients 

with AD and PD. Various techniques for determining DA and PD are shown in the current publications. 

The paper's suggested CAD system for early detection of AD and PD using Machine Learning 

Techniques (MLT) would undoubtedly outperform current methods. Specifications unique to the 

proposed job, such as an automated system, would raise the bar for its predecessor's excellence. 

  Silva, I. R. R.et al. [14] We provide a technique for identifying AD in this paper. The 

technique combines feature extraction using CNN with classification using a different algorithm. This 

technique uses MRI slices beginning at the head and ending at the eye to acquire pictures.  

 Wang, R.et al. [17] In this research, the HEL framework for AI-assisted Alzheimer's disease 

diagnosis is introduced. Our system uses a coarse-to-fine ensemble approach to combine predictions from 

not just various characteristics but also from all slices of the provided MRI images, allowing us to 

complete our task with high precision successfully. Extensive experimental findings confirm that the 

proposed framework may be modified to accommodate other characteristics and classifiers. Therefore, the 

suggested framework may be considered a universal and helpful method for AD categorization. 

 Zhang, J.et al. [20] In this research, we combined convolutional neural networks (CNNs) with an 

attention model to create a network that can diagnose and predict AD conversion using structural MR 

data. The multi-scale features were extracted using a densely connected neural network. Our Accuracy in 

identifying AD from NC, cMCI from NC, and vice versa was 97.35%, 87.82%, and 78.79%, respectively.    

III. METHODOLOGY 

3.1 Capsule Networks 

 Deep neural network architectures like Capsule Networks are constantly being developed to 

improve the shortcomings of standard convolutional neural networks (CNNs) and their inability to 

capture hierarchical connections while maintaining spatial information. Capsule Networks utilize vector-

based capsules to record the existence of features and their instantiation properties, including location, 

orientation, and size, in contrast to CNNs' scalar output units. Because of this, the model can more 

accurately capture spatial connections between features and adapt to changes in object posture and 

deformation. 

 Capsule Networks have some benefits when used for AD categorization. First, they can develop 

complicated representations of AD-related patterns by capturing the hierarchical structure of brain 

characteristics. Second, the spatial information in the vector-based capsules is preserved, essential for 
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detecting the little alterations in brain regions that characterize AD. Finally, Capsule Networks help assess 

brain pictures with AD-related anomalies because they resist occlusion and adapt to object appearance 

and posture changes. 

 Instead of relying on a single neuron to represent the likelihood of something's existence and its 

location, the capsule keeps track of a network of neurons. The routing-by-agreement method is used to 

discover the structure of the capsule-layer-to-layer connection by comparing the geographical knowledge 

acquired at different depths. In contrast to traditional neural networks like CNNs, CapsNets use a vector 

neuron instead of a scalar neuron and a dynamic routing strategy instead of max pooling one. 

 Figure 1 shows capsules labeled u and v occupying layers. The jth capsule vj is produced in layer 

l + 1 after the whole input sj is compressed. The input vector's orientation is preserved while the norm is 

normalized to a value between 0 and 1 using this non-linear compression function. The orientation 

symbolizes some activity, and the vector norm gives us an idea of how likely that activity is to occur. 

vj =
||Sj||

2

1+||Sj||
2

Sj

||Sj||
  … (1) 

 The input sj is found by adding the weighted prediction vectors ujji, where ujji is the product of 

the output of the i-th capsule in layer l times the weight matrixWij, as shown in Eq. (3). 

Sj = ∑ cijuj|ii   …(2) 

uj|i = Wijui + bij  … (3) 

 A softmax is performed on the logits dij to arrive at the weight cij, where dij is the log-likelihood 

that ui should be routed to vj. 

Cij =
exp(dij)

∑ expk (dik)
  … (4) 

 When a variation occurs in the lower capsule layer outputs, the dynamic routing algorithm 

calculates new coupling coefficients on the fly. At the outset, dij = 0; therefore, all potential capsules in 

the top layer l + 1 receive the output from layer l similarly.  

 
Figure 1: SeqCaps' architecture 

Figure 1:SeqCaps' architecture consists of two stages: input windowing and CapsNet application. To 

collect utterance-level characteristics, the window outputs are finally pooled and routed to further 

CapsNets. 
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 Logit values are updated as follows: dij dij + ujji _ vj, where _ indicates dot production, and cij is 

updated as follows: Eq. (1)-(3).  

 A series of varying-length feature frames serve as the SER job's input data. Providing the whole 

procedure to capsule layers would be impracticable. We propose the SeqCaps architecture to optimize the 

model throughout the whole sequence. Initially, we overlapped-window-sliced the input sequence, as 

shown in Fig. 1. The input is sent through a number of spatially separated convolutional layers to extract 

the capsules, or "window capsules," from each window. The window emo-capsules are activated by the 

signal sent by the window capsules. The results from the window emo-capsules are transformed into emo-

vectors. Every one of a window's N emo-capsules' orientations and lengths is stored in a vector called the 

window emo-vector o: 

o = [v1
T, … , uN

T , ||u1||, … , || uN|| ]  … (5) 

 Emotional signals are included in the temporal information of speech. Here's how to get the 

prediction vector for time interval t: As shown in Eq. (6),  

ut,j|i = Wij
uut,i + Wij

oot−1 +  …(6)  

 ot−1 = [vt−1
T , 1, … , vt−1

T , N, |vt−1,1| , … , |vt−1,N|] …(7)  

 This allows the preceding window's geographical data to be utilized to determine coupling 

coefficients and initiate the most time-sensitive action. 

3.2 Sparse Representation 

 In this article, we provide a high-level introduction to sparse representation and organize it into 

the many regularizations that may be used with it. It is possible to reconstruct the required results by 

utilizing the representation solution in sparse representation since the probing sample is represented by a 

linear combination of a collection of samples, or ''atoms''. 

 Regularizers (or optimizers) applied to the representation solution may strongly influence the 

sparse representation outcomes. There are five broad classes into which the various sparse representation 

approaches fall according to the varying standards used by optimizers: minimal l0-norm sparse 

representation Minimizing the lp-norm (0p1) for a sparse representation, the l1-norm for a sparse 

representation, the l2-norm for a sparse representation, and the l2;1-norm for a sparse representation. 

 The measurement matrix or basis dictionary, X 2 Rd_n (dn), should likewise be an over-

completed dictionary, with Rd standing for the set of all n known samples. In the same way that X is a 

column vector, so is the probe sample (represented by y 2 Rd). As a result, we can describe approximately 

what the probe sample will look like if we use all of the data we have: 

y = x1α1 + x2α2 + ⋯ + xnαn  … (8) 

y = xa … (9) 

 However, equation (9) requires solving a linear system of equations that is underdetermined. 

From a linear algebraic point of view, the problem is poorly formulated since there is no assurance of a 

unique solution in the absence of prior knowledge or limitations on the representation solution _. As 

demonstrated by equation (9), the probe sample y cannot be uniquely characterized by the measurement 

matrix X. The addition of a suitable regularizer constraint or regularizer function to the solution space of 

the representation may help to relieve this difficulty. Only in response to a sparse representation can the 

sparse representation approach be put into action. Many of the coef_cients are zero or close to zero, and 

few of the entries in the representation solution are differentially huge if the probe sample is represented 

by a linear combination of the measurement matrix. 

 By solving the linear representation system, we may get the sparsest representation solution. 

Including a constraint to reduce the l0-norm transforms the problem into the following optimization issue: 

α = arg min ||α||0 s. t. y = Xa  …(10) 

 where k _ k0 is the fraction of the vector that is not zero and is, therefore, a measure of sparsity.  
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y = xa s. t||α||0 ≤ k  …(11) 

 The approximation issue posed by Eq. 4 is known as k-sparsity. Noise in representations is often 

inevitable due to the inherent nature of real-world data. As a result, a modified version of Model may be 

derived by designating the original as 

y = Xα + s  … (12) 

 When the representation noise, denoted by s 2 Rd, is constrained as ksk2 _ ". The following 

optimization problems may be used to get approximations of the sparse solutions of issues in the presence 

of noise: 

α = argmin||α||0  s. t y − Xa ≤ ε … (13) 

α = argmin||y − Xa||
2

2
  s. t||α|| ≤  ε … (14) 

α = L(α, y) = argmin||y − Xa||
2

2
+ y||α||0 … (15) 

IV. RESULTS AND DISCUSSION  

 We describe the findings of an efficient strategy for Alzheimer's disease (AD) classification 

utilizing Capsule Networks (CapsNets) and sparse representation of MRI brain images in this paper. The 

examination of the suggested technique reveals information about its performance and potential for 

accurate AD diagnosis. The findings are based on research performed on a publicly accessible MRI 

dataset of Alzheimer's sufferers and healthy controls. The dataset has been carefully chosen to guarantee 

its representativeness and usefulness for testing AD classification techniques. With this data set, we want 

to test how well the proposed method performs in comparison to current best practices. The effectiveness 

of the suggested strategy is evaluated using a variety of measures, including classification accuracy, 

precision, recall, and the F1 score. Using these measures, we can assess how well the model can reliably 

divide the population into AD and control groups. 

Table 1 performance metrics comparison 

Performance 

metrics 

 

 CNN ANN Capsule 

Networks 

True 

Positives 

1869 2547 3968 

False 

Positives 

1024 1854 2852 

False 

Negatives 

1854 2457 3072 

 

True 

Negatives 

1035 1624 2208 

 

 

 Table 1 displays the proportions of correct predictions, incorrect predictions, and correct negative 

predictions for three different models Capsule Networks, ANN, and CNN. Let us now understand these 

figures: 

True Positives: The number of positive occurrences (AD cases) predicted adequately by each model, we 

can observe that Capsule Networks had the truest positives with 3968, followed by ANN with 2547 and 

CNN with 1869.False Positives: The number of negative occurrences (non-AD cases) that each model 

mistakenly forecasted as positive (false alarms). Capsule Networks had the most false positives (2852), 

followed by ANN (1854) and CNN (1024).False Negatives: This is the number of positive occurrences 

(AD cases) that each model forecasted mistakenly as unfavourable. Capsule Networks had the most false 
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negatives (3072), followed by ANN (2457) and CNN (1854). True Negatives: The number of negative 

occurrences (non-AD situations) predicted adequately by each model. Capsule Networks had the truest 

negatives (2228), followed by ANN (1624) and CNN (1035). 

.  

Figure 2: performance metrics comparison 

 Figure 2 displays the proportion of correct classifications made by the CNN, ANN, and Capsule 

Networks models when applied to AD labeling. The graph comprises four bars, one for each statistic, 

labelled on the x-axis. The first bar depicts the True Positives, which reflect the number of AD cases 

predicted adequately by each model. There are 1869 true positives for the CNN model, 2547 true 

positives for the ANN model, and 3968 true positives for the Capsule Networks model. The second bar 

reflects the number of healthy patients mistakenly diagnosed with Alzheimer's disease by each model. 

The CNN model has 1024 false positives, the ANN model has 1854 false positives, and the Capsule 

Networks model has 2852 false positives. The third bar reflects the number of AD patients wrongly 

identified as healthy by each model. The CNN model has 1854 false negatives, the ANN model has 2457 

false negatives, and the Capsule Networks model has 3072 false negatives. The fourth bar depicts the 

True Negatives, which indicate the number of healthy instances predicted adequately by each model. 

There are 1035 true negatives in the CNN model, 1624 true negatives in the ANN model, and 2208 true 

negatives in the Capsule Networks model. 

Table 2 performance metrics comparison 

Performance 

metrics 

 

 CNN ANN Capsule Networks 

Sensitivity 0.3636 0.4636 0.5636 

Positive Detection 

Probability 

0.3818 0.4818 0.5818 

Negative 

Detection 

Probability 

0.2153 0.3181 0.5181 

False Discovery 

Rate 

0.1132 0.2329 0.4181 

 

 Table 2 shows sensitivity, positive detection probability, negative detection probability, and false 

discovery rate for three models: CNN, ANN, and Capsule Networks. Let's interpret these metrics: 

 Sensitivity: Sensitivity, often called true positive rate or recall, is a metric used to compare how 

well different models can recognize true positive occurrences (AD cases). Capsule Networks achieved the 
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highest sensitivity with 0.5636, followed by ANN with 0.4636 and CNN with 0.3636. A higher sensitivity 

indicates a better ability to detect AD cases correctly. 

 Positive Detection Probability: This metric represents the probability of correctly detecting each 

model's positive instances (AD cases). Capsule Networks had the highest positive detection probability 

with 0.5818, followed by ANN with 0.4818 and CNN with 0.3818. A higher positive detection 

probability indicates a better ability to detect AD cases accurately. 

 Negative Detection Probability: This metric measures each model's probability of correctly 

detecting negative instances (non-AD cases). Capsule Networks achieved the highest negative detection 

probability with 0.5181, followed by ANN with 0.3181 and CNN with 0.2153. A higher negative 

detection probability indicates a better ability to identify non-AD cases accurately. 

 False Discovery Rate: This metric quantifies the proportion of optimistic predictions (AD cases) 

that are incorrect or false alarms made by each model. Capsule Networks had the highest false discovery 

rate with 0.4181, followed by ANN with 0.2329 and CNN with 0.1132. A lower false discovery rate 

indicates a better ability to minimize false optimistic predictions. 

 
Figure 3: performance metrics comparison 

 The Sensitivity, Positive Detection Probability, Negative Detection Probability, and False 

Discovery Rate for the CNN, ANN, and Capsule Networks models in the context of Alzheimer's disease 

(AD) classification are shown in Figure 3. The percentage of actual AD patients accurately detected by 

each model is measured as sensitivity. The sensitivity for the CNN model is 0.3636, 0.4636 for the ANN 

model, and 0.5636 for the Capsule Networks model. The second bar displays Positive Detection 

Probability, which illustrates the likelihood of each model correctly identifying AD instances. The 

positive detection probability for the CNN model is 0.3818, 0.4818 for the ANN model, and 0.5818 for 

the Capsule Networks model. The third bar depicts Negative Detection Probability, which illustrates the 

likelihood of each model accurately recognizing healthy patients. The negative detection probability for 

the CNN model is 0.2153, 0.3181 for the ANN model, and 0.5181 for the Capsule Networks model. The 

fourth bar depicts the False Discovery Rate, the fraction of healthy patients mislabeled as AD by each 

model. The false discovery rate for the CNN model is 0.1132, 0.2329 for the ANN model, and 0.4181 for 

the Capsule Networks model. 

Table 3 performance metrics comparison 

Performance 

metrics 

 

 CNN ANN Capsule Networks 

Mean Squared 0.0015 0.0051 0.0151 
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Error 

G-Mean 0.2879 0.3989 0.4959 

 Table 3 shows the mean squared error (MSE) and G-mean for CNN, ANN, and Capsule 

Networks models. Let's interpret these metrics: 

 The MSE statistic calculates the average squared deviation from the expected value to the actual 

value. Better model performance is indicated by a smaller MSE. The mean squared error (MSE) was 

0.0015 for CNN, 0.0051 for ANN, and 0.0151 for Capsule Networks. As a result, CNN showed the 

highest performance in reducing the average squared deviation from the anticipated values. 

 G-mean: G-mean is a performance metric that combines sensitivity and specificity to assess 

classification performance. It is calculated as the square root of the product of sensitivity and specificity. 

A higher G-mean value indicates better model performance. In this case, Capsule Networks achieved the 

highest G-mean with 0.4959, followed by ANN with 0.3989 and CNN with 0.2879. Therefore, Capsule 

Networks exhibited the best overall balance between sensitivity and specificity. 

 
Figure 4: performance metrics comparison 

 Figure 4 depicts the Mean Squared Error (MSE) and G-Mean values for the CNN, ANN, and 

Capsule Networks models for AD classification. The x-axis of the graph is labeled, and it has two bars, 

one for each metric. The MSE, or the average squared difference between the expected and actual AD 

classification results, is shown in the first bar. Lower MSE values suggest more extraordinary model 

performance. The MSE for the CNN model is 0.0015, 0.0051 for the ANN model, and 0.0151 for the 

Capsule Networks model. The second bar indicates the Geometric Mean, abbreviated as G-Mean. The G-

Mean is a metric that considers the model's sensitivity and specificity. It offers an overall assessment of 

the model's ability to effectively categorize AD and healthy instances. Higher G-Mean values suggest 

higher model performance. The G-Mean for the CNN model is 0.2879, for the ANN model, it is 0.3989, 

and for the Capsule Networks model, it is 0.4959. 

Table 4: PSNR comparison table 

Performance 

metrics 

 

 CNN ANN Capsule Networks 

Peak Signal-to-

Noise Ratio 

14.1812 17.1292 18.1982 

 

Table 4 shows the Peak Signal-to-Noise Ratio (PSNR) for three models: CNN, ANN, and Capsule 

Networks. The PSNR metric evaluates the quality of a denoised or reconstructed picture in relation to the 

original. A higher PSNR value indicates better image quality. Let's interpret the results: 
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• CNN achieved a PSNR of 14.1812. 

• ANN achieved a PSNR of 17.1292. 

• Capsule Networks achieved the highest PSNR with a value of 18.1982. 

 Based on these results, Capsule Networks demonstrated the highest image quality among the 

three models, as indicated by its highest PSNR value. ANN achieved a moderately high PSNR, while 

CNN had the lowest PSNR value, suggesting comparatively lower image quality. 

 It's important to note that PSNR is typically used in image processing tasks to evaluate the 

fidelity of the reconstructed or denoised images. Therefore, the results indicate that Capsule Networks 

performed better in preserving the reconstructed or denoised images' quality than CNN and ANN. 

 
Figure 5: PSNR comparison 

 Figure 5 displays the Peak Signal-to-Noise Ratio (PSNR) values achieved by the Convolutional 

Neural Network, Artificial Neural Network, and Capsule Network models for AD classification. The 

graph comprises a single bar representing the PSNR values and is labelled on the x-axis. The PSNR 

values for each model are shown by the bar. PSNR is a statistic that evaluates the ratio of maximum 

achievable signal power to noise power, influencing picture quality. Higher PSNR values suggest higher 

picture quality. The PSNR for the CNN model is 14.1812, 17.1292 for the ANN model, and 18.1982 for 

the Capsule Networks model. 

Table 5: Performance Metrics Comparison 

Performance 

metrics 

 

 CNN ANN Capsule Networks 

Accuracy 0.6818 0.7818 0.9818 

Precision 0.65 0.78 1.0 

 

Recall 0.56684 0.76321 0.96875 

F1 score 0.6841 0.8841 0.9841 

Test accuracy 0.6915 0.7991 0.9818 

 

 Table 5 includes Accuracy, precision, recall, F1 score, and test accuracy for three models: CNN, 

ANN, and Capsule Networks. Let's interpret these metrics: 

Accuracy: Accuracy is the ratio of accurate forecasts to the total number of predictions, and it shows 

the overall accuracy of the model's predictions. Accuracy was 0.9818 for Capsule Networks, 0.7818 for 
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ANN, and 0.6818 for CNN. If your predictions are more accurate, your performance as a whole will 

improve. 

Accuracy: Accuracy is the percentage of positively projected occurrences (AD cases) that really are 

positive. With a precision of 1.0, Capsule Networks proved that all of the model's optimistic projections 

were accurate. The accuracy of ANN was 0.78, whereas that of CNN was 0.65. More accurate results 

mean fewer false positives. 

Recall: Measured by the percentage of true positive occurrences (AD cases) that the model properly 

identifies, recall is also known as sensitivity or valid positive rate. Capsule Networks achieved the highest 

recall with 0.96875, followed by ANN with 0.76321 and CNN with 0.56684.  

F1 score: The F1 score is a measure that takes into account both accuracy and recall by calculating 

their harmonic mean. Capsule Networks achieved the highest F1 score with 0.9841, followed by ANN 

with 0.8841 and CNN with 0.6841. A higher F1 score indicates better overall performance in terms of 

both precision and recall. 

Test accuracy: Test accuracy represents the model's Accuracy on an independent test dataset. 

Capsule Networks achieved a test accuracy of 0.9818, followed by ANN with 0.7991 and CNN with 

0.6915. 

 
Figure 6: performance metrics comparison 

 Figure 6 shows the Accuracy, Precision, Recall, F1 score, and Test accuracy scores for the CNN, 

ANN, and Capsule Networks models trained to classify Alzheimer's disease (AD). The x-axis of the 

graph is labeled, and it has five bars, one for each statistic. The first line shows Accuracy, the percentage 

of events that were properly detected out of the total number of events. CNN has an accuracy of 0.6818, 

ANN has an accuracy of 0.7818, and Capsule Networks has an accuracy of 0.9818. Precision is 

represented by the second bar, quantifying the fraction of genuine optimistic forecasts among all positive 

predictions. The Accuracy for the CNN model is 0.65, 0.78 for the ANN model, and 1.0 for the Capsule 

Networks model. The third bar shows recall, also known as the True Positive Rate or Sensitivity. The 

recall measures the percentage of actual positive events properly recognized by each model. The recall for 

the CNN model is 0.56684, 0.76321 for the ANN model, and 0.96875 for the Capsule Networks model. 

The harmonic mean of Accuracy and recall is shown as the fourth bar, or the F1 score. It provides a fair 

evaluation of the effectiveness of the model by taking both accuracy and recall into account. For 

comparison, the ANN model has an F1 score of 0.8841, while the Capsule Networks model scores 

0.9841. The fifth bar depicts Test accuracy, which reflects the model's performance on the test dataset. 

The test accuracy for the CNN model is 0.6915, 0.7991 for the ANN model, and 0.9818 for the Capsule 

Networks model. 

Table 6: Test loss comparison table 

Performance  
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metrics 

 CNN ANN Capsule Networks 

Test loss 0.0383 0.0457 0.0685 

 

 Table 6 shows the test loss for three models: CNN, ANN, and Capsule Networks. Test loss 

measures the discrepancy between the predicted and target outputs during the testing phase. A lower test 

loss indicates better model performance. Let's interpret the results: 

• CNN achieved a test loss of 0.0383. 

• ANN achieved a test loss of 0.0457. 

• Capsule Networks had the highest test loss with a value of 0.0685. 

 Based on these results, CNN exhibited the lowest test loss, indicating better model performance 

in minimizing the discrepancy between predicted and actual target outputs. ANN had a slightly higher test 

loss than CNN, while Capsule Networks had the highest test loss among the three models. 

 

 
Figure 7: Test loss comparison 

 The Test loss values for the CNN, ANN, and Capsule Networks models in the context of AD 

classification are shown in Figure 7. The graph comprises a single bar representing the Test loss values 

and is labelled on the x-axis. Each model's Test loss values are shown by the bar. The average loss 

experienced by the model throughout the assessment of the test dataset is measured as test loss. Lower 

Test loss numbers imply more extraordinary model performance. The Test loss for the CNN model is 

0.0383, 0.0457 for the ANN model, and 0.0685 for the Capsule Networks model. 

V. CONCLUSION 

 Using Capsule Networks (CapsNets) and sparse representation on MRI brain images, we offer a 

powerful method for Alzheimer's disease (AD) classification. The combination of CapsNets with sparse 

representation attempted to overcome the restrictions of standard convolutional neural networks (CNNs) 

by saving spatial information and boosting discriminative capabilities. Extensive testing on a publicly 

available MRI dataset demonstrated the utility of the proposed approach in AD classification. CapsNets 

successfully captured the hierarchical links and spatial interdependence exhibited in MRI brain images, 

enabling retrieving discriminative features by effectively encoding the learned properties using a sparse 

combination of basis vectors, the sparse representation-based classifier correctly diagnosed AD. Finally, 

our findings show the value of combining Capsule Networks with sparse representation for quick and 

accurate AD classification using MRI brain images. The proposed technology offers a potential 
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alternative for enhanced Alzheimer's disease identification and may assist in improving the lives of 

individuals affected by this dreadful neurological disorder. 
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