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Abstract 

Absolutely harmonious labeling 𝑓 is an injection from the vertex set of a graph 𝐺 with 𝑞  edges to the 

set {0,1,2, … , 𝑞 − 1}, if each edge 𝑢𝑣 is assigned 𝑓(𝑢) + 𝑓(𝑣) then the resulting edge labels can be 

arranged as {𝑎0, 𝑎1, 𝑎2, … , 𝑎𝑞−1} where 𝑎𝑖 = 𝑞 − 𝑖 or  𝑞 + 𝑖, 0 ≤  𝑖 ≤  𝑞 − 1. However, when 𝐺 is a 

tree one of the vertex labels may be assigned to exactly two vertices. A graph which admits 

Absolutely harmonious labeling is called Absolutely Harmonious Graph. In this paper, we study 

absolutely harmonious labeling of some derived graph. 

 

Keywords: Jelly fish, Star related graph, Butterfly graph, Fire cracker 

 

1. Introduction 

    In this paper, we consider finite and undirected graphs. A graph labeling is an assignment of 

integers to the vertices or edges or both subject to certain conditions. A vertex labeling of a graph 𝐺 is 

an assignment 𝑓 of labels to the vertices that induces a label for each edge 𝑥𝑦 depending on the vertex 

labels. M.seenivasan and A.Lourdusamy [3] introduced another variation of  harmonious labeling, 

namely, Absolutely harmonious labeling of graphs. In this paper we study the absolutely harmonious 

labeling of some derived graphs. 

Definition 1.1. 

    Absolutely harmonious labeling 𝑓 is an injection from the vertex set of a graph 𝐺 with 𝑞 edges to 

the set {0,1,2, … , 𝑞 − 1}, if each edge 𝑢𝑣 is assigned 𝑓(𝑢) + 𝑓(𝑣) then the resulting edge labels can 
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be arranged as {𝑎0, 𝑎1, 𝑎2, … , 𝑎𝑞−1}  where 𝑎𝑖 = 𝑞 − 𝑖 or 𝑞 + 𝑖, 0 ≤  𝑖 ≤  𝑞 − 1. A graph which 

admits absolutely harmonious labeling is called Absolutely Harmonious Graph. 

Theorem 1.1.  

𝑃𝑛
2 is an Absolutely Harmonious Graph. 

Proof.  

 Let 𝑣1, 𝑣2, . . . , 𝑣𝑛 be the vertices of the path 𝑃𝑛
2 

and 𝐸(𝑃𝑛
2) = {𝑣𝑖 𝑣𝑖+1: 1 ≤  𝑖 ≤  𝑛 − 1} ∪ {𝑣𝑖𝑣𝑖+2 ∶ 1 ≤  𝑖 ≤  𝑛 − 2} 

Here, 𝑃𝑛
2 is of order n and size 2𝑛 − 3. 

Now,Define 𝑓: 𝑉(𝑃𝑛
2) → {0,1,2,3, . . . , , 𝑞 − 1} as follows 

𝑓(𝑣𝑖  ) = 𝑖 − 1, 1 ≤  𝑖 ≤ 𝑛  
The induced edge label are as follows 

𝑓∗(𝑣𝑖𝑣𝑖+1) = 𝑎2𝐾  ;  1 ≤  𝑖 ≤  𝑛 − 1; 𝑛 − 2 ≤  𝑘 ≤  0 
𝑓∗(𝑣𝑖𝑣𝑖+2) = 𝑎2𝑘−1;  1 ≤  𝑖 ≤  𝑛 − 2; 𝑛 − 2 ≤  𝑘 ≤  1 
From the above, 𝑎0, 𝑎1, 𝑎2, … , 𝑎𝑞−1 where 𝑎𝑖 = 𝑞 − 𝑖 or  𝑞 + 𝑖, 0 ≤  𝑖 ≤  𝑞 − 1  are the arranged edge 

labels. 

Therefore 𝑓 admits absolutely harmonious labeling of 𝑃𝑛
2 and  Hence 𝑃𝑛

2  is an Absolutely 

Harmonious Graph. 

 

 
Figure 1: 𝑷𝟔

𝟐 

 

Theorem 1.2. 

Jelly fish 𝐽(𝑛, 𝑛) is an Absolutely Harmonious Graph.  

Proof.    

Let 𝐺 = 𝐽(𝑛, 𝑛). 
The vertex set and the edge set of 𝐺 are given by 

 𝑉(𝐺) = {(𝑢, 𝑣, 𝑥, 𝑦), (𝑢𝑖𝑣𝑖, 1 ≤  𝑖 ≤  𝑛)} 
and 𝐸(𝐺) = {[(𝑢𝑥) ∪ (𝑢𝑦) ∪ (𝑣𝑥) ∪ (𝑣𝑦) ∪ (𝑥𝑦)] ∪ [(𝑢𝑢𝑖; 1 ≤  𝑖 ≤  𝑛] ∪ [(𝑣𝑣𝑖; 1 ≤  𝑖 ≤  𝑛]} 
Here,𝐺 is of order 2𝑛 + 4 and size 2𝑛 + 5 
Now,Define 𝑓: 𝑉(𝐺) → {0,1,2,3, . . . , , 𝑞 − 1} as follows 

𝑓(𝑢) = 1 
𝑓(𝑣) = 2 
𝑓(𝑥) = 3 
𝑓(𝑦) = 0 
𝑓(𝑢𝑖) = 𝑞 − 𝑖, 1 ≤  𝑖 ≤  𝑛  
𝑓(𝑣𝑖  ) = 4 + 𝑖, 1 ≤  𝑖 ≤  𝑛 − 1 
Then the induced edge labels are as follows 

𝑓∗(𝑢𝑦) = 𝑎𝑞−1 

𝑓∗(𝑦𝑣) = 𝑎𝑞−2 
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𝑓∗(𝑥𝑦) = 𝑎𝑞−3 

𝑓∗(𝑥𝑢) = 𝑎𝑞−4 

𝑓∗(𝑣𝑥) = 𝑎𝑞−5 

𝑓∗(𝑢𝑢𝑖) = 𝑎𝑘  ; 1 ≤  𝑖 ≤  𝑛; 0 ≤  𝑘 ≤  𝑛 − 1  
𝑓∗(𝑣𝑣𝑖) = 𝑎𝑛+𝑘;  𝑛 ≤  𝑖 ≤  1; 0 ≤  𝑘 ≤  𝑛 − 1  
From the above, 𝑎0, 𝑎1, 𝑎2, … , 𝑎𝑞−1 where 𝑎𝑖 = 𝑞 − 𝑖 or  𝑞 + 𝑖, 0 ≤  𝑖 ≤  𝑞 − 1 are the arranged edge 

labels. 

Therefore, 𝑓 is an absolutely harmonious labeling of the Jelly fish 𝐽(𝑛, 𝑛)  

and  Hence the Jelly fish 𝐽(𝑛, 𝑛) is an Absolutely Harmonious Graph. 

 

Definition 1.2.  

Let 𝑆𝑚,3 be a star graph with 3𝑚 + 1 vertices and 3𝑚 edges.  

Let 𝑉 = {𝑢} ∪ {𝑥𝑖: 1 ≤  𝑖 ≤  𝑚} ∪ {𝑦𝑖: 1 ≤  𝑖 ≤  𝑚} ∪ {𝑧𝑖: 1 ≤  𝑖 ≤  𝑚} 
be the vertex set of star graph where 𝑢 is a center vertex 𝑥𝑖 , 𝑦𝑖 , 𝑣𝑖 are the vertices of the path 𝑃3  for  

1 ≤  𝑖 ≤  𝑚 . and 𝐸 = {𝑢𝑥𝑖: 1 ≤  𝑖 ≤  𝑚} ∪ {𝑥𝑖𝑦𝑖: 1 ≤  𝑖 ≤  𝑚} ∪ {𝑦𝑖𝑧𝑖: 1 ≤  𝑖 ≤  𝑚} be the edge set 

of the star graph 𝑆𝑚,3.It is denoted as in the below figure. 

 
Figure 2: 𝑺𝒎,𝟑 

Theorem 1.3. 

The Star graph 𝑆𝑚,3 is Absolutely Harmonious. 

Proof.  

Let 𝐺 be a Star graph 𝑆𝑚,3 with 3𝑚 + 1 vertices and 3𝑚 edges.  

Now,Define 𝑓: 𝑉(𝐺) → {0,1,2,3, . . . , , 𝑞 − 1} as follows 

𝑓( 𝑢) = 0 
𝑓( 𝑥𝑖) = 𝑖 ,1 ≤  𝑖 ≤  𝑚  
𝑓( 𝑦𝑖) = 𝑚 + 𝑖, 1 ≤  𝑖 ≤  𝑚 
𝑓( 𝑧𝑖) = (2𝑚 − 1) + 𝑖, 3 ≤  𝑖 ≤  𝑚  
The induced edge labels are as follows 

𝑓∗(𝑢𝑢𝑖) = 𝑎𝑞−𝑖; 1 ≤  𝑖 ≤  𝑚 

𝑓∗(𝑥𝑖𝑦𝑖) = 𝑎2𝑗; 1 ≤  𝑖 ≤  𝑚; 𝑚 − 1 ≤  𝑗 ≤  0 

𝑓∗(𝑦𝑖𝑧𝑖) = 𝑎2𝑖−1; 1 ≤  𝑖 ≤  𝑚 
From the above, 𝑎0, 𝑎1, 𝑎2, … , 𝑎𝑞−1 
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where 𝑎𝑖 = 𝑞 − 𝑖 or  𝑞 + 𝑖, 0 ≤  𝑖 ≤  𝑞 − 1are the arranged edge labels 

Therefore 𝑓 is an absolutely harmonious labeling of the Star graph 𝑆𝑚,3 

and  Hence the Star graph 𝑆𝑚,3is an Absolutely Harmonious Graph. 

 

Theorem 1.4.  

𝐾1,𝑛,𝑛 is an Absolutely Harmonious Graph.  

Proof. 

 Let 𝐺 = 𝐾1,𝑛,𝑛  

The vertex set and the edge set of 𝐺 are given by 

𝑉(𝐺) = {𝑢, 𝑣, 𝑤𝑖, 1 ≤  𝑖 ≤  𝑛} 
and 𝐸(𝐺) = {[(𝑢𝑣)] ∪ [(𝑢𝑤𝑖); 1 ≤  𝑖 ≤  𝑛] ∪ [(𝑣𝑤𝑖 ); 1 ≤  𝑖 ≤  𝑛]} 
Here,𝐺 is of order 𝑛 + 2 and size 2𝑛 + 1 

Now,Define 𝑓: 𝑉(𝐺) → {0,1,2,3, . . . , , 𝑞 − 1} as follows 

𝑓(𝑢) = 𝑛 + 1, 𝑓(𝑣) = 0 
𝑓(𝑤𝑖) = 𝑖; 1 ≤  𝑖 ≤  𝑛 
The induced edge labels are as follows 

𝑓∗(𝑣𝑤𝑖) = 𝑎𝑞−𝑖1 ≤  𝑖 ≤  𝑛 

𝑓∗(𝑢𝑤𝑖) = 𝑎[(𝑞−𝑛)+𝑖]; 1 ≤  𝑖 ≤  𝑛 

𝑓∗(𝑢𝑣) = 𝑎[𝑞−(𝑛+1] 

From the above, 𝑎0, 𝑎1, 𝑎2, … , 𝑎𝑞−1 where 𝑎𝑖 = 𝑞 − 𝑖 or  𝑞 + 𝑖, 0 ≤  𝑖 ≤  𝑞 − 1are the arranged edge 

labels. 

Therefore 𝑓 admits absolutely harmonious labeling of 𝐾1,𝑛,𝑛 

and  Hence 𝐾1,𝑛,𝑛  is an Absolutely Harmonious Graph. 

 

Definition 1.3.  

Let 𝐺1 and 𝐺2  be two copies of a graph. We construct a new graph 𝐺 ′ =< 𝐺1Δ 𝐺2 > which is 

obtained by joining the apex vertices of  𝐺1 and 𝐺2 by an edge as well as to a new vertex 𝑣 ′. 

Theorem 1.5.   

< 𝐾1,𝑛
(1)

 Δ   𝐾1,𝑛
(2)

>  is an Absolutely Harmonious Graph. 

Proof.   

Let 𝐺 =< 𝐾1,𝑛
(1)

 Δ   𝐾1,𝑛
(2)

>. 

 Let 𝑣1
(1)

, 𝑣2
(1)

, . . . , , 𝑣𝑛
(1)

  be the pendant vertices of 𝐾1,𝑛
(1)

    and 𝑣1
(2)

, 𝑣2
(2)

, . . . , , 𝑣𝑛
(2)

be the pendant 

vertices of 𝐾1,𝑛
(2)

     

 Now,𝑢 and 𝑣 are the apex vertices of 𝐾1,𝑛
(1)

      and 𝐾1,𝑛
(2)

    respectively and  𝑢, 𝑣 are adjacent to a new 

common vertex 𝑤. 

 Here, 𝐺 is of order 2𝑛 + 3 and size 2𝑛 + 3.   

Now,Define 𝑓: 𝑉(𝐺) → {0,1,2,3, . . . , , 𝑞 − 1} as follows 

𝑓(𝑤) = 𝑛 + 2 
𝑓(𝑢) = 0 
𝑓(𝑣) = 𝑛 + 1 
𝑓(𝑢𝑖 ) = 𝑖, 1 ≤  𝑖 ≤  𝑛  
𝑓(𝑣𝑗) = 𝑛 + 2 + 𝑗, 1 ≤  𝑗 ≤  𝑛  

Then the induced edge labels are as follows 

𝑓∗(𝑢𝑤) = 𝑎𝑛+1 

𝑓∗(𝑢𝑣) = 𝑎𝑛+2 
𝑓∗(𝑣𝑤) = 𝑎0 
𝑓∗(𝑢𝑢𝑘) = 𝑎𝑞−𝑖; 1 ≤  𝑖 ≤  𝑛; 1 ≤  𝑘 ≤  𝑛  

𝑓∗(𝑣𝑣𝑘) = 𝑎𝑘  ;  1 ≤  𝑘 ≤  𝑛  



BioGecko Vol 12 Issue 03 2023 
 ISSN NO: 2230-5807 
 
 

2583 
A Journal for New Zealand Herpetology 
 

From the above, 𝑎0, 𝑎1, 𝑎2, … , 𝑎𝑞−1 where 𝑎𝑖 = 𝑞 − 𝑖 or  𝑞 + 𝑖, 0 ≤  𝑖 ≤  𝑞 − 1  are the arranged edge 

labels. 

Therefore, 𝑓 admits absolutely harmonious labeling.  

and  Hence, 𝐺 =< 𝐾1,𝑛
(1)

 Δ   𝐾1,𝑛
(2)

>is an Absolutely Harmonious Graph. 

 

Definition 1.4.  

The Butterfly graph 𝐵𝑛,𝑚 where 𝑛, 𝑚 are positive integers is defined as the two cycles of the same 

order 𝑛 sharing a common vertex with an arbitrary number of 𝑚 pendant edges are attached at a 

common vertex vertex. 

Theorem 1.6.  

The Butterfly graph 𝐵3,𝑚, 𝑚 ≥ 2 is an Absolutely Harmonious Graph. 

Proof.  

Let 𝐺 = 𝐵3,𝑚, be a Butterfly graph. 

Let 𝑢1, 𝑢2, 𝑢3, 𝑢4, 𝑢5, 𝑤1, 𝑤2, 𝑤3, . . . , 𝑤𝑚 be the vertices of the two cycle 𝐶3 and 𝑢3  be the center 

vertex of the two cycles. 

Let 𝑤1, 𝑤2, 𝑤3, . . . , 𝑤𝑚 be the adjacent vertices of 𝑢3 and the Edge set is 

{(𝑢3, 𝑤𝑖), (𝑢𝑖, 𝑢𝑖+1), (𝑢1, 𝑢3), (𝑢3, 𝑢5)}. 
Here,𝐺 = 𝐵3,𝑚 is of order 2𝑛 + 𝑚 − 1 and size 2𝑛 + 𝑚. 

Now,Define 𝑓: 𝑉(𝐺) → {0,1,2,3, . . . , , 𝑞 − 1} as follows 

Case 1: m=2 

𝑓(𝑢1) = 2 
𝑓(𝑢2) = 𝑞 − 2 
𝑓(𝑢3) = 0 
𝑓(𝑢4) = 1 
𝑓(𝑢5) = 3 
𝑓(𝑤1) = 𝑞 − 1 
𝑓(𝑤2) = 𝑞 − 3 
Case 2: 𝑚 ≻ 2 
𝑓(𝑢1 ) = 2 
𝑓(𝑢2) = 1 
𝑓(𝑢3) = 0 
𝑓(𝑢4) = 4 
𝑓(𝑢5) = 𝑚 + 2 
Now,the label of 𝑓(𝑤𝑖) for 1 ≤  𝑖 ≤  𝑚 is as follows 

𝐂𝐚𝐬𝐞 𝟑: m=3 

𝑓(𝑤𝑗) = 𝑚 + 𝑗 + 3,1 ≤  𝑖 ≤  𝑚, 0 ≤  𝑗 ≤  𝑚   

Case 4: 𝑚 = 4 
𝑓(𝑤1) = 5 
𝑓(𝑤2) = 6 
𝑓(𝑤3) = 8 
𝑓(𝑤4) = 9 
Case 5: 𝑚 ≻ 4 
𝑓(𝑤1) = 5 
𝑓(𝑤𝑖) = 𝑘 + 5,1 ≤  𝑘 ≤  𝑚 − 4,2 ≤  𝑖 ≤  𝑚 − 3 
𝑓(𝑤𝑖) = 𝑚 + 𝑡 + 3,0 ≤  𝑡 ≤  2, 𝑚 − 2 ≤  𝑖 ≤  𝑚 
It can be easily verifed that 𝑎0, 𝑎1, 𝑎2, … , 𝑎𝑞−1 

where 𝑎𝑖 = 𝑞 − 𝑖 or  𝑞 + 𝑖, 0 ≤  𝑖 ≤  𝑞 − 1 are the arranged edge labels. 

Therefore, f is an absolutely harmonious labeling of the Butterfly graph 𝐵3,𝑚, 𝑚 ≥ 2 
and  Hence the Butterfly graph 𝐵3,𝑚, 𝑚 ≥ 2 is an Absolutely Harmonious Graph. 
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Figure 3: 𝑩𝟑,𝟏𝟐 

Definition 1.5.  

The Fire craker graph denoted by 𝐹2,𝑚 is obtained the concatenation of 2 stars 𝑆𝑚 by linking one leaf 

from each star. 

 

Theorem 1.7.  

 The Fire craker 𝐹2,𝑚, 𝑚 ≥ 3 admits Absolutely Harmonious Labeling. 

Proof.   

Let 𝐺 = 𝐹2,𝑚, 𝑚 ≥ 3. 

Let 𝑉(𝐺) = {𝑣1, 𝑣2} ∪ {𝑣1
1, 𝑣1

2, 𝑣1
3, . . . , 𝑣1

𝑚} ∪ {𝑣2
1, 𝑣2

2, 𝑣2
3, . . . , 𝑣2

𝑚} 

and 𝐸(𝐺) = {𝑣1𝑣1
𝑖 , 1 ≤  𝑖 ≤  𝑚} ∪ { 𝑣2𝑣2

𝑗
, 1 ≤  𝑗 ≤  𝑚} ∪ {𝑣1

′ , 𝑣2
𝑚}  

Here,𝐺 = 𝐹2,𝑚, 𝑚 ≥ 3 is of order 2𝑚 + 2 and  size 2𝑚 + 1 

Now,Define  𝑓: 𝑉(𝐺) → {0,1,2,3, . . . , , 𝑞 − 1} as follows 

𝑓(𝑣1) = 0 
𝑓(𝑣2) = 𝑚 + 1 

𝑓(𝑣1
𝑖 ) = 𝑖, 1 ≤  𝑖 ≤  𝑚  

𝑓(𝑣2
𝑗
) = 𝑚 + 𝑗, 1 ≤  𝑗 ≤  𝑚  

Then the induced edge labels are as follows 

𝑓∗(𝑣1
′  𝑣2

𝑚) = 𝑎0 
𝑓∗(𝑣2𝑣2

𝑖 ) = 𝑎𝑘;  1 ≤  𝑖 ≤  𝑚, 1 ≤  𝑘 ≤  𝑚 

𝑓∗(𝑣1𝑣1
𝑗
) = 𝑎𝑞−𝑘;  1 ≤  𝑗 ≤  𝑚, 1 ≤  𝑘 ≤  𝑚  

It can be easily verifed that 𝑎0, 𝑎1, 𝑎2, … , 𝑎𝑞−1 where 𝑎𝑖 = 𝑞 − 𝑖 or  𝑞 + 𝑖, 0 ≤  𝑖 ≤  𝑞 − 1 are the 

arranged edge labels. 

Therefore, f is an absolutely harmonious labeling of the Fire cracker  𝐹2,𝑚, 𝑚 ≥ 3 and  Hence the Fire 

craker 𝐹2,𝑚, 𝑚 ≥ 3 is an Absolutely Harmonious Graph. 
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Figure 4: 𝑭𝟐,𝟕 

Theorem 1.8. 

𝐵𝑛,𝑛
2  is Absolutely harmonious graph. 

Proof 

Let 𝐺 = 𝐵𝑛,𝑛
2  

Let 𝑉(𝐺) = {𝑢, 𝑣, 𝑢𝑖, 𝑣𝑖: 1 ≤  𝑖 ≤  𝑛}, 𝐸(𝐺) = {𝑢𝑣, 𝑣𝑣𝑖, 𝑢𝑖𝑣, 𝑣𝑖𝑢: 1 ≤  𝑖 ≤  𝑛}. 
Then 𝐺 is of order 2𝑛 + 2 and size 4𝑛 + 1. 

Now,Define 𝑓: 𝑉(𝐺) → {0,1,2,3, . . . , , 𝑞 − 1} as follows 

Case 1: n=2 

𝑓(𝑢) = 1 
𝑓(𝑣) = 0 
𝑓(𝑢1) = 4 
𝑓(𝑢2) = 6 
𝑓(𝑣1) = 2 
𝑓(𝑣2) = 8 
Case 2:n=3 

𝑓(𝑢) = 1 
𝑓(𝑣) = 0 
𝑓(𝑢1) = 4 
𝑓(𝑢2) = 6 
𝑓(𝑢3) = 8 
𝑓(𝑣1) = 2 
𝑓(𝑣2) = 12 
𝑓(𝑣3) = 10 
Case 3:  𝑛 ≥  4   
𝑓(𝑢) = 1 
𝑓(𝑣) = 0 
𝑓(𝑢𝑘) = 2𝑖; 3 ≤  𝑖 ≤  𝑛 + 2,1 ≤  𝑘 ≤  𝑛  
𝑓(𝑣1) = 2 
𝑓(𝑣2) = 4 
𝑓(𝑣3) = 𝑞 − 1 
𝑓(𝑣𝑘) = 𝑓(𝑣𝑘−1) − 2; 4 ≤  𝑘 ≤  𝑛   
It can be easily verified that 𝑓 is an absolutely harmonious labeling. 

and  Hence, 𝐵𝑛,𝑛
2  is an Absolutely harmonious graph. 

 

Definition 1.6. 
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A Fan graph is defined as the graph 𝐾1 + 𝑃𝑛, where 𝐾1 is the empty graph 

on one vertex and 𝑃𝑛 , 𝑛 ≥  2 is the path graph on n vertices. 

Theorem 1.9 

The Fan graph 𝐹𝑛  is an Absolutely harmonious graph. 

Proof. 

Let 𝐺 = 𝐹𝑛  
Let 𝑉(𝐺) = {𝑤0, 𝑤1, 𝑤2, 𝑤3, ⋯ , 𝑤𝑛} 
𝐸(𝐺) = {𝑤0𝑤𝑖: 1 ≤  𝑖 ≤  𝑛} ∪ { 𝑤𝑖𝑤𝑖+1: 1 ≤  𝑖 ≤  𝑛 − 1} 
Then 𝐺 is of order 𝑛 + 1 and size 2𝑛 − 1 

Now,Define 𝑓: 𝑉(𝐺) → {0,1,2,3, . . . , , 𝑞 − 1}  as follows 

𝑓(𝑤0) = 1 
𝑓(𝑤1) = 0 
𝑓(𝑤𝑘) = 2𝑗; 2 ≤  𝑘 ≤  𝑛; 1 ≤  𝑗 ≤  𝑛  
Then the Induced edge labels are arranged as  

𝑓∗(𝑤0𝑤𝑠) = 𝑎[𝑞−(2𝑟−1)];  1 ≤  𝑠 ≤  𝑛;  1 ≤  𝑟 ≤  𝑛 

and the obtained edge labels 𝑎2𝑝−1 ; 1 ≤  𝑝 ≤  𝑛 − 1 can be arranged for the remaining edges 

𝑤𝑖𝑤𝑖+1;  1 ≤  𝑖 ≤  𝑛 − 1. 
Hence all the edge labels can be arranged in the above mentioned pattern. 

Hence, we observe that 𝑎0, 𝑎1, 𝑎2, … , 𝑎𝑞−1 

where 𝑎𝑖 = 𝑞 − 𝑖 or  𝑞 + 𝑖, 0 ≤  𝑖 ≤  𝑞 − 1 are the arranged edge labels. 

Therefore, 𝑓 admits absolutely harmonious labeling of the Fan graph.  

and  Hence,the Fan graph 𝐹𝑛 is an Absolutely harmonious graph. 

Definition 1.7. 

A tree is called a Spider if it has a center vertex 𝑐 of degree 𝑅 ≻  1 and all the other vertex is either a 

leaf or with degree 2.Thus a Spider is an amalgamation of 𝑘 paths with various lengths. If it has 𝑥1's 

path of length 𝑎1, 𝑥2's path of length 𝑎2,...,.We shall denote the Spider by 𝑆𝑃(𝑎1
𝑥1𝑎1

𝑥1 , . . . , 𝑎𝑚
𝑥𝑚) where  

𝑎1 ≺  𝑎2 ≺ . . . , ≺  𝑎𝑚 and 𝑥1 + 𝑥2+. . . , +𝑥𝑚 = 𝑅. 
Theorem 1.10. 

The Spider graph  𝑆𝑃(1𝑚, 2𝑡) is an Absolutely harmonious graph. 

Proof. 

Let 𝐺 = 𝑆𝑃(1𝑚, 2𝑡) 

Let 𝑉(𝐺) = {𝑢, 𝑣𝑖 , 𝑢𝑗: 1 ≤  𝑖 ≤  𝑚; 1 ≤  𝑗 ≤  2𝑡} 

𝐸(𝐺) = {𝑢𝑣𝑖: 1 ≤  𝑖 ≤  𝑚;  𝑢𝑢𝑖: 1 ≤  𝑖 ≤  𝑡;  𝑢𝑖𝑢𝑡+𝑖: 1 ≤  𝑖 ≤  𝑡} 
Then 𝐺 is of order 𝑛 + 1 and size 2𝑛 − 1. 

Now,Define 𝑓: 𝑉(𝐺) → {0,1,2,3, . . . , , 𝑞 − 1} as follows 

Case 1: 𝑚 is odd and 𝑡 is odd. 

𝑓(𝑢) = 0 
𝑓(𝑣𝑖) = 𝑖; 1 ≤  𝑖 ≤  𝑚 
𝑓(𝑢2𝑡) = 𝑡 

𝑓(𝑢𝑗) = {
𝑚 + 𝑗  𝑤ℎ𝑒𝑛 𝑗 𝑖𝑠 𝑜𝑑𝑑 𝑎𝑛𝑑 1 ≤ 𝑗 ≤ 𝑡

2𝑚 + 𝑗 𝑤ℎ𝑒𝑛 𝑗 𝑖𝑠 𝑒𝑣𝑒𝑛 𝑎𝑛𝑑 1 ≤ 𝑗 ≤ 𝑡
 

𝑓(𝑢𝑗) = {
𝑚 + 𝑗   𝑤ℎ𝑒𝑛 𝑗 𝑖𝑠 𝑒𝑣𝑒𝑛 𝑎𝑛𝑑 𝑡 + 1 ≤ 𝑗 ≤ 2𝑡 − 1

𝑗          𝑤ℎ𝑒𝑛 𝑗 𝑖𝑠 𝑜𝑑𝑑 𝑎𝑛𝑑 𝑡 + 1 ≤ 𝑗 ≤ 2𝑡 − 1
 

Case 2: 𝑚 is even and 𝑡 is even. 

𝑓(𝑢) = 0 
𝑓(𝑣𝑖) = 2𝑛 + 1; 1 ≤  𝑖 ≤  𝑡; 0 ≤  𝑛 ≤  𝑡 − 1 
𝑓(𝑢1) = 𝑚 + 𝑡 
𝑓(𝑢𝑗) = 𝑓(𝑢𝑘) − 2 
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𝑓(𝑢𝑗) = {

𝑡 ;              𝑗 = 𝑡 + 1
2𝑡 + 1  ;   𝑗 = 𝑡 + 2

(2𝑡 + 1) + 𝑘 ;    𝑡 + 3 ≤ 𝑗 ≤ 2𝑡;
                         1 ≤ 𝑘 ≤ 𝑡 − 2

 

Case 3:𝑚 is odd and 𝑡 is even. 
𝑓(𝑢) = 0 
𝑓(𝑣𝑖) = 𝑖; 1 ≤  𝑖 ≤  𝑚 
𝑓(𝑢1) = 𝑞 − 1 
𝑓(𝑢𝑗) = 𝑓(𝑢𝑘) − 2; 2 ≤  𝑗 ≤  𝑡;  1 ≤  𝑘 ≤  𝑡 − 1 

𝑓(𝑢𝑗) = 1; 𝑗 = 𝑡 + 1 

𝑓(𝑢𝑗) = 2𝑡 − 1; 𝑗 = 𝑡 + 2 

𝑓(𝑢𝑗) = 2𝑡 − 3; 𝑗 = 𝑡 + 3 

𝑓(𝑢𝑗) = 2𝑡 − 5; 𝑗 = 𝑡 + 4 

𝑓(𝑢𝑗) = 𝑞 − 2𝑘; 1 ≤  𝑘 ≤  [𝑡/2]; 𝑡 + 5 ≤  𝑗 ≤  2𝑡 

It can be easily verifed that 𝑎0, 𝑎1, 𝑎2, … , 𝑎𝑞−1 where 𝑎𝑖 = 𝑞 − 𝑖 or  𝑞 + 𝑖, 0 ≤  𝑖 ≤  𝑞 − 1  are the 

arranged edge labels in the above three cases . 

Therefore, 𝑓 admits an absolutely harmonious labeling.  

and  Hence the Spider graph  𝑆𝑃(1𝑚, 2𝑡)  is an Absolutely Harmonious Graph. 
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