ABSOLUTELY HARMONIOUS LABELING OF SOME DERIVED GRAPHS

M.Seenivasan,P.Aruna Rukmani and A.Lourdusamy
M.Seenivasan, Department of Mathematics, Associate Professor, Sri Paramakalyani College, Alwarkurichi-627412, Tamilnadu,India. E-mail address: msvasan_22@yahoo.com
P.Aruna Rukmani, Department of Mathematics, Research scholar, Registration number:19121282092009. Affliated to Manonmaniam Sundaranar University, Abishekapatti.,Tirunelveli-627012,
Tamilnadu,India. E-mail address: parukmanimaths@gmail.com
A.Lourdusamy, Department of Mathematics, Associate Professor, St.Xavier's college(Autonomous), Palayamkottai-627002, Tamilnadu, India. E-mail address: lourdusamy15@gmail.com

Abstract

Absolutely harmonious labeling f is an injection from the vertex set of a graph G with q edges to the set $\{0,1,2, \ldots, q-1\}$, if each edge $u v$ is assigned $f(u)+f(v)$ then the resulting edge labels can be arranged as $\left\{a_{0}, a_{1}, a_{2}, \ldots, a_{q-1}\right\}$ where $a_{i}=q-i$ or $q+i, 0 \leq i \leq q-1$. However, when G is a tree one of the vertex labels may be assigned to exactly two vertices. A graph which admits Absolutely harmonious labeling is called Absolutely Harmonious Graph. In this paper, we study absolutely harmonious labeling of some derived graph.

Keywords: Jelly fish, Star related graph, Butterfly graph, Fire cracker

1. Introduction

In this paper, we consider finite and undirected graphs. A graph labeling is an assignment of integers to the vertices or edges or both subject to certain conditions. A vertex labeling of a graph G is an assignment f of labels to the vertices that induces a label for each edge $x y$ depending on the vertex labels. M.seenivasan and A.Lourdusamy [3] introduced another variation of harmonious labeling, namely, Absolutely harmonious labeling of graphs. In this paper we study the absolutely harmonious labeling of some derived graphs.

Definition 1.1.

Absolutely harmonious labeling f is an injection from the vertex set of a graph G with q edges to the set $\{0,1,2, \ldots, q-1\}$, if each edge $u v$ is assigned $f(u)+f(v)$ then the resulting edge labels can
be arranged as $\left\{a_{0}, a_{1}, a_{2}, \ldots, a_{q-1}\right\}$ where $a_{i}=q-i$ or $q+i, 0 \leq i \leq q-1$. A graph which admits absolutely harmonious labeling is called Absolutely Harmonious Graph.

Theorem 1.1.

P_{n}^{2} is an Absolutely Harmonious Graph.

Proof.

Let $v_{1}, v_{2}, \ldots, v_{n}$ be the vertices of the path P_{n}^{2}
and $E\left(P_{n}^{2}\right)=\left\{v_{i} v_{i+1}: 1 \leq i \leq n-1\right\} \cup\left\{v_{i} v_{i+2}: 1 \leq i \leq n-2\right\}$
Here, P_{n}^{2} is of order n and size $2 n-3$.
Now,Define $f: V\left(P_{n}^{2}\right) \rightarrow\{0,1,2,3, \ldots, q-1\}$ as follows
$f\left(v_{i}\right)=i-1,1 \leq i \leq n$
The induced edge label are as follows
$f^{*}\left(v_{i} v_{i+1}\right)=a_{2 K} ; 1 \leq i \leq n-1 ; n-2 \leq k \leq 0$
$f^{*}\left(v_{i} v_{i+2}\right)=a_{2 k-1} ; 1 \leq i \leq n-2 ; n-2 \leq k \leq 1$
From the above, $a_{0}, a_{1}, a_{2}, \ldots, a_{q-1}$ where $a_{i}=q-i$ or $q+i, 0 \leq i \leq q-1$ are the arranged edge labels.
Therefore f admits absolutely harmonious labeling of P_{n}^{2} and Hence P_{n}^{2} is an Absolutely Harmonious Graph.

Figure 1: P_{6}^{2}

Theorem 1.2.

Jelly fish $J(n, n)$ is an Absolutely Harmonious Graph.

Proof.

Let $G=J(n, n)$.
The vertex set and the edge set of G are given by
$V(G)=\left\{(u, v, x, y),\left(u_{i} v_{i}, 1 \leq i \leq n\right)\right\}$
and $E(G)=\left\{[(u x) \cup(u y) \cup(v x) \cup(v y) \cup(x y)] \cup\left[\left(u u_{i} ; 1 \leq i \leq n\right] \cup\left[\left(v v_{i} ; 1 \leq i \leq n\right]\right\}\right.\right.$
Here, G is of order $2 n+4$ and size $2 n+5$
Now,Define $f: V(G) \rightarrow\{0,1,2,3, \ldots, q-1\}$ as follows
$f(u)=1$
$f(v)=2$
$f(x)=3$
$f(y)=0$
$f\left(u_{i}\right)=q-i, 1 \leq i \leq n$
$f\left(v_{i}\right)=4+i, 1 \leq i \leq n-1$
Then the induced edge labels are as follows
$f^{*}(u y)=a_{q-1}$
$f^{*}(y v)=a_{q-2}$

BioGecko

$f^{*}(x y)=a_{q-3}$
$f^{*}(x u)=a_{q-4}$
$f^{*}(v x)=a_{q-5}$
$f^{*}\left(u u_{i}\right)=a_{k} ; 1 \leq i \leq n ; 0 \leq k \leq n-1$
$f^{*}\left(v v_{i}\right)=a_{n+k} ; n \leq i \leq 1 ; 0 \leq k \leq n-1$
From the above, $a_{0}, a_{1}, a_{2}, \ldots, a_{q-1}$ where $a_{i}=q-i$ or $q+i, 0 \leq i \leq q-1$ are the arranged edge labels.
Therefore, f is an absolutely harmonious labeling of the Jelly fish $J(n, n)$
and Hence the Jelly fish $J(n, n)$ is an Absolutely Harmonious Graph.

Definition 1.2.

Let $S_{m, 3}$ be a star graph with $3 m+1$ vertices and $3 m$ edges.
Let $V=\{u\} \cup\left\{x_{i}: 1 \leq i \leq m\right\} \cup\left\{y_{i}: 1 \leq i \leq m\right\} \cup\left\{z_{i}: 1 \leq i \leq m\right\}$
be the vertex set of star graph where u is a center vertex x_{i}, y_{i}, v_{i} are the vertices of the path P_{3} for $1 \leq i \leq m$. and $E=\left\{u x_{i}: 1 \leq i \leq m\right\} \cup\left\{x_{i} y_{i}: 1 \leq i \leq m\right\} \cup\left\{y_{i} z_{i}: 1 \leq i \leq m\right\}$ be the edge set of the star graph $S_{m, 3}$.It is denoted as in the below figure.

Figure 2: $S_{m, 3}$

Theorem 1.3.

The Star graph $S_{m, 3}$ is Absolutely Harmonious.

Proof.

Let G be a Star graph $S_{m, 3}$ with $3 m+1$ vertices and $3 m$ edges.
Now,Define $f: V(G) \rightarrow\{0,1,2,3, \ldots, q-1\}$ as follows
$f(u)=0$
$f\left(x_{i}\right)=i, 1 \leq i \leq m$
$f\left(y_{i}\right)=m+i, 1 \leq i \leq m$
$f\left(z_{i}\right)=(2 m-1)+i, 3 \leq i \leq m$
The induced edge labels are as follows
$f^{*}\left(u u_{i}\right)=a_{q-i} ; 1 \leq i \leq m$
$f^{*}\left(x_{i} y_{i}\right)=a_{2 j} ; 1 \leq i \leq m ; m-1 \leq j \leq 0$
$f^{*}\left(y_{i} z_{i}\right)=a_{2 i-1} ; 1 \leq i \leq m$
From the above, $a_{0}, a_{1}, a_{2}, \ldots, a_{q-1}$
where $a_{i}=q-i$ or $q+i, 0 \leq i \leq q-1$ are the arranged edge labels Therefore f is an absolutely harmonious labeling of the Star graph $S_{m, 3}$ and Hence the Star graph $S_{m, 3}$ is an Absolutely Harmonious Graph.

Theorem 1.4.

$K_{1, n, n}$ is an Absolutely Harmonious Graph.

Proof.

Let $G=K_{1, n, n}$
The vertex set and the edge set of G are given by
$V(G)=\left\{u, v, w_{i}, 1 \leq i \leq n\right\}$
and $E(G)=\left\{[(u v)] \cup\left[\left(u w_{i}\right) ; 1 \leq i \leq n\right] \cup\left[\left(v w_{i}\right) ; 1 \leq i \leq n\right]\right\}$
Here, G is of order $n+2$ and size $2 n+1$
Now,Define $f: V(G) \rightarrow\{0,1,2,3, \ldots, q-1\}$ as follows
$f(u)=n+1, f(v)=0$
$f\left(w_{i}\right)=i ; 1 \leq i \leq n$
The induced edge labels are as follows
$f^{*}\left(v w_{i}\right)=a_{q-i} 1 \leq i \leq n$
$f^{*}\left(u w_{i}\right)=a_{[(q-n)+i]} ; 1 \leq i \leq n$
$f^{*(u v)}=a_{[q-(n+1]}$
From the above, $a_{0}, a_{1}, a_{2}, \ldots, a_{q-1}$ where $a_{i}=q-i$ or $q+i, 0 \leq i \leq q-1$ are the arranged edge labels.
Therefore f admits absolutely harmonious labeling of $K_{1, n, n}$
and Hence $K_{1, n, n}$ is an Absolutely Harmonious Graph.

Definition 1.3.

Let G_{1} and G_{2} be two copies of a graph. We construct a new graph $G^{\prime}=<G_{1} \Delta G_{2}>$ which is obtained by joining the apex vertices of G_{1} and G_{2} by an edge as well as to a new vertex v^{\prime}.

Theorem 1.5.

$<K_{1, n}^{(1)} \Delta K_{1, n}^{(2)}>$ is an Absolutely Harmonious Graph.

Proof.

Let $G=<K_{1, n}^{(1)} \Delta K_{1, n}^{(2)}>$.
Let $v_{1}^{(1)}, v_{2}^{(1)}, \ldots, v_{n}^{(1)}$ be the pendant vertices of $K_{1, n}^{(1)}$ and $v_{1}^{(2)}, v_{2}^{(2)}, \ldots,, v_{n}^{(2)}$ be the pendant vertices of $K_{1, n}^{(2)}$
Now, u and v are the apex vertices of $K_{1, n}^{(1)} \quad$ and $K_{1, n}^{(2)} \quad$ respectively and u, v are adjacent to a new common vertex w.
Here, G is of order $2 n+3$ and size $2 n+3$.
Now,Define $f: V(G) \rightarrow\{0,1,2,3, \ldots, q-1\}$ as follows
$f(w)=n+2$
$f(u)=0$
$f(v)=n+1$
$f\left(u_{i}\right)=i, 1 \leq i \leq n$
$f\left(v_{j}\right)=n+2+j, 1 \leq j \leq n$
Then the induced edge labels are as follows
$f^{*}(u w)=a_{n+1}$
$f^{*}(u v)=a_{n+2}$
$f^{*}(v w)=a_{0}$
$f^{*}\left(u u_{k}\right)=a_{q-i} ; 1 \leq i \leq n ; 1 \leq k \leq n$
$f^{*}\left(v v_{k}\right)=a_{k} ; 1 \leq k \leq n$

From the above, $a_{0}, a_{1}, a_{2}, \ldots, a_{q-1}$ where $a_{i}=q-i$ or $q+i, 0 \leq i \leq q-1$ are the arranged edge labels.
Therefore, f admits absolutely harmonious labeling.
and Hence, $G=<K_{1, n}^{(1)} \Delta K_{1, n}^{(2)}>$ is an Absolutely Harmonious Graph.

Definition 1.4.

The Butterfly graph $B_{n, m}$ where n, m are positive integers is defined as the two cycles of the same order n sharing a common vertex with an arbitrary number of m pendant edges are attached at a common vertex vertex.

Theorem 1.6.

The Butterfly graph $B_{3, m}, m \geq 2$ is an Absolutely Harmonious Graph.

Proof.

Let $G=B_{3, m}$, be a Butterfly graph.
Let $u_{1}, u_{2}, u_{3}, u_{4}, u_{5}, w_{1}, w_{2}, w_{3}, \ldots, w_{m}$ be the vertices of the two cycle C_{3} and u_{3} be the center vertex of the two cycles.
Let $w_{1}, w_{2}, w_{3}, \ldots, w_{m}$ be the adjacent vertices of u_{3} and the Edge set is $\left\{\left(u_{3}, w_{i}\right),\left(u_{i}, u_{i+1}\right),\left(u_{1}, u_{3}\right),\left(u_{3}, u_{5}\right)\right\}$.
Here, $G=B_{3, m}$ is of order $2 n+m-1$ and size $2 n+m$.
Now,Define $f: V(G) \rightarrow\{0,1,2,3, \ldots, q-1\}$ as follows
Case 1: $\mathrm{m}=2$
$f\left(u_{1}\right)=2$
$f\left(u_{2}\right)=q-2$
$f\left(u_{3}\right)=0$
$f\left(u_{4}\right)=1$
$f\left(u_{5}\right)=3$
$f\left(w_{1}\right)=q-1$
$f\left(w_{2}\right)=q-3$
Case 2: $m>2$
$f\left(u_{1}\right)=2$
$f\left(u_{2}\right)=1$
$f\left(u_{3}\right)=0$
$f\left(u_{4}\right)=4$
$f\left(u_{5}\right)=m+2$
Now, the label of $f\left(w_{i}\right)$ for $1 \leq i \leq m$ is as follows
Case 3: $\mathrm{m}=3$
$f\left(w_{j}\right)=m+j+3,1 \leq i \leq m, 0 \leq j \leq m$
Case 4: $m=4$
$f\left(w_{1}\right)=5$
$f\left(w_{2}\right)=6$
$f\left(w_{3}\right)=8$
$f\left(w_{4}\right)=9$
Case 5: $m>4$
$f\left(w_{1}\right)=5$
$f\left(w_{i}\right)=k+5,1 \leq k \leq m-4,2 \leq i \leq m-3$
$f\left(w_{i}\right)=m+t+3,0 \leq t \leq 2, m-2 \leq i \leq m$
It can be easily verifed that $a_{0}, a_{1}, a_{2}, \ldots, a_{q-1}$
where $a_{i}=q-i$ or $q+i, 0 \leq i \leq q-1$ are the arranged edge labels.
Therefore, f is an absolutely harmonious labeling of the Butterfly graph $B_{3, m}, m \geq 2$
and Hence the Butterfly graph $B_{3, m}, m \geq 2$ is an Absolutely Harmonious Graph.

Figure 3: $\boldsymbol{B}_{3,12}$

Definition 1.5.

The Fire craker graph denoted by $F_{2, m}$ is obtained the concatenation of 2 stars S_{m} by linking one leaf from each star.

Theorem 1.7.

The Fire craker $F_{2, m}, m \geq 3$ admits Absolutely Harmonious Labeling.

Proof.

Let $G=F_{2, m}, m \geq 3$.
Let $V(G)=\left\{v_{1}, v_{2}\right\} \cup\left\{v_{1}^{1}, v_{1}^{2}, v_{1}^{3}, \ldots, v_{1}^{m}\right\} \cup\left\{v_{2}^{1}, v_{2}^{2}, v_{2}^{3}, \ldots, v_{2}^{m}\right\}$
and $E(G)=\left\{v_{1} v_{1}^{i}, 1 \leq i \leq m\right\} \cup\left\{v_{2} v_{2}^{j}, 1 \leq j \leq m\right\} \cup\left\{v_{1}^{\prime}, v_{2}^{m}\right\}$
Here, $G=F_{2, m}, m \geq 3$ is of order $2 m+2$ and size $2 m+1$
Now,Define $f: V(G) \rightarrow\{0,1,2,3, \ldots, q-1\}$ as follows
$f\left(v_{1}\right)=0$
$f\left(v_{2}\right)=m+1$
$f\left(v_{1}^{i}\right)=i, 1 \leq i \leq m$
$f\left(v_{2}^{j}\right)=m+j, 1 \leq j \leq m$
Then the induced edge labels are as follows
$f^{*}\left(v_{1}^{\prime} v_{2}^{m}\right)=a_{0}$
$f^{*}\left(v_{2} v_{2}^{i}\right)=a_{k} ; 1 \leq i \leq m, 1 \leq k \leq m$
$f^{*}\left(v_{1} v_{1}^{j}\right)=a_{q-k} ; 1 \leq j \leq m, 1 \leq k \leq m$
It can be easily verifed that $a_{0}, a_{1}, a_{2}, \ldots, a_{q-1}$ where $a_{i}=q-i$ or $q+i, 0 \leq i \leq q-1$ are the arranged edge labels.
Therefore, f is an absolutely harmonious labeling of the Fire cracker $F_{2, m}, m \geq 3$ and Hence the Fire craker $F_{2, m}, m \geq 3$ is an Absolutely Harmonious Graph.

Figure 4: $\boldsymbol{F}_{\mathbf{2 , 7}}$

Theorem 1.8.

$B_{n, n}^{2}$ is Absolutely harmonious graph.

Proof

Let $G=B_{n, n}^{2}$
Let $V(G)=\left\{u, v, u_{i}, v_{i}: 1 \leq i \leq n\right\}, E(G)=\left\{u v, v v_{i}, u_{i} v, v_{i} u: 1 \leq i \leq n\right\}$.
Then G is of order $2 n+2$ and size $4 n+1$.
Now,Define $f: V(G) \rightarrow\{0,1,2,3, \ldots, q-1\}$ as follows
Case 1: $\mathrm{n}=2$
$f(u)=1$
$f(v)=0$
$f\left(u_{1}\right)=4$
$f\left(u_{2}\right)=6$
$f\left(v_{1}\right)=2$
$f\left(v_{2}\right)=8$
Case 2:n=3
$f(u)=1$
$f(v)=0$
$f\left(u_{1}\right)=4$
$f\left(u_{2}\right)=6$
$f\left(u_{3}\right)=8$
$f\left(v_{1}\right)=2$
$f\left(v_{2}\right)=12$
$f\left(v_{3}\right)=10$
Case 3: $n \geq 4$
$f(u)=1$
$f(v)=0$
$f\left(u_{k}\right)=2 i ; 3 \leq i \leq n+2,1 \leq k \leq n$
$f\left(v_{1}\right)=2$
$f\left(v_{2}\right)=4$
$f\left(v_{3}\right)=q-1$
$f\left(v_{k}\right)=f\left(v_{k-1}\right)-2 ; 4 \leq k \leq n$
It can be easily verified that f is an absolutely harmonious labeling.
and Hence, $B_{n, n}^{2}$ is an Absolutely harmonious graph.

Definition 1.6.

A Fan graph is defined as the graph $K_{1}+P_{n}$, where K_{1} is the empty graph on one vertex and $P_{n}, n \geq 2$ is the path graph on n vertices.

Theorem 1.9

The Fan graph F_{n} is an Absolutely harmonious graph.

Proof.

Let $G=F_{n}$
Let $V(G)=\left\{w_{0}, w_{1}, w_{2}, w_{3}, \cdots, w_{n}\right\}$
$E(G)=\left\{w_{0} w_{i}: 1 \leq i \leq n\right\} \cup\left\{w_{i} w_{i+1}: 1 \leq i \leq n-1\right\}$
Then G is of order $n+1$ and size $2 n-1$
Now, Define $f: V(G) \rightarrow\{0,1,2,3, \ldots,, q-1\}$ as follows
$f\left(w_{0}\right)=1$
$f\left(w_{1}\right)=0$
$f\left(w_{k}\right)=2 j ; 2 \leq k \leq n ; 1 \leq j \leq n$
Then the Induced edge labels are arranged as
$f^{*}\left(w_{0} w_{s}\right)=a_{[q-(2 r-1)]} ; 1 \leq s \leq n ; 1 \leq r \leq n$
and the obtained edge labels $a_{2 p-1} ; 1 \leq p \leq n-1$ can be arranged for the remaining edges $w_{i} w_{i+1} ; 1 \leq i \leq n-1$.
Hence all the edge labels can be arranged in the above mentioned pattern.
Hence, we observe that $a_{0}, a_{1}, a_{2}, \ldots, a_{q-1}$
where $a_{i}=q-i$ or $q+i, 0 \leq i \leq q-1$ are the arranged edge labels.
Therefore, f admits absolutely harmonious labeling of the Fan graph.
and Hence,the Fan graph F_{n} is an Absolutely harmonious graph.

Definition 1.7.

A tree is called a Spider if it has a center vertex c of degree $R>1$ and all the other vertex is either a leaf or with degree 2.Thus a Spider is an amalgamation of k paths with various lengths. If it has x_{1} 's path of length a_{1}, x_{2} 's path of length a_{2}, \ldots, . We shall denote the Spider by $S P\left(a_{1}^{x_{1}} a_{1}^{x_{1}}, \ldots, a_{m}^{x_{m}}\right)$ where $a_{1} \prec a_{2} \prec \ldots, \prec a_{m}$ and $x_{1}+x_{2}+\ldots,+x_{m}=R$.

Theorem 1.10.

The Spider graph $S P\left(1^{m}, 2^{t}\right)$ is an Absolutely harmonious graph.

Proof.

Let $G=S P\left(1^{m}, 2^{t}\right)$
Let $V(G)=\left\{u, v_{i}, u_{j}: 1 \leq i \leq m ; 1 \leq j \leq 2 t\right\}$
$E(G)=\left\{u v_{i}: 1 \leq i \leq m ; u u_{i}: 1 \leq i \leq t ; u_{i} u_{t+i}: 1 \leq i \leq t\right\}$
Then G is of order $n+1$ and size $2 n-1$.
Now,Define $f: V(G) \rightarrow\{0,1,2,3, \ldots, q-1\}$ as follows
Case 1: m is odd and t is odd.
$f(u)=0$
$f\left(v_{i}\right)=i ; 1 \leq i \leq m$
$f\left(u_{2 t}\right)=t$
$f\left(u_{j}\right)=\left\{\begin{array}{c}m+j \text { when } j \text { is odd and } 1 \leq j \leq t \\ 2 m+j \text { when } j \text { is even and } 1 \leq j \leq t\end{array}\right.$
$f\left(u_{j}\right)=\left\{\begin{array}{cc}m+j & \text { when } j \text { is even and } t+1 \leq j \leq 2 t-1 \\ j & \text { when } j \text { is odd and } t+1 \leq j \leq 2 t-1\end{array}\right.$
Case 2: m is even and t is even.
$f(u)=0$
$f\left(v_{i}\right)=2 n+1 ; 1 \leq i \leq t ; 0 \leq n \leq t-1$
$f\left(u_{1}\right)=m+t$
$f\left(u_{j}\right)=f\left(u_{k}\right)-2$

BioGecko

$$
f\left(u_{j}\right)=\left\{\begin{array}{cl}
t ; \quad j=t+1 \\
2 t+1 ; & j=t+2 \\
(2 t+1)+k ; & t+3 \leq j \leq 2 t \\
& 1 \leq k \leq t-2
\end{array}\right.
$$

Case 3:m is odd and t is even.
$f(u)=0$
$f\left(v_{i}\right)=i ; 1 \leq i \leq m$
$f\left(u_{1}\right)=q-1$
$f\left(u_{j}\right)=f\left(u_{k}\right)-2 ; 2 \leq j \leq t ; 1 \leq k \leq t-1$
$f\left(u_{j}\right)=1 ; j=t+1$
$f\left(u_{j}\right)=2 t-1 ; j=t+2$
$f\left(u_{j}\right)=2 t-3 ; j=t+3$
$f\left(u_{j}\right)=2 t-5 ; j=t+4$
$f\left(u_{j}\right)=q-2 k ; 1 \leq k \leq[t / 2] ; t+5 \leq j \leq 2 t$
It can be easily verifed that $a_{0}, a_{1}, a_{2}, \ldots, a_{q-1}$ where $a_{i}=q-i$ or $q+i, 0 \leq i \leq q-1$ are the arranged edge labels in the above three cases .
Therefore, f admits an absolutely harmonious labeling.
and Hence the Spider graph $S P\left(1^{m}, 2^{t}\right)$ is an Absolutely Harmonious Graph.

References

1. F. Harary,Graph theory,Addision wesely,New Delhi(1969).
2. J.A.Gallian,A.dynamical survey of graph labeling, The Electronic Journal of Combinatorics, 23 (2020) DS6.
3. M.Seenivasan, A.Lourdusamy, Absolutely Harmonious labeling of Graphs, International J.Math.Combin, 2,40-51 (2011).
4. M.Seenivasan,P. Aruna Rukmani and A.Lourdusamy, Absolutely Harmonious labeling of Graphs, Pre-Conference Proceedings ICDM2021-MSU, ISBN 978-93-91077-53-2, 111-116.
