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Abstract.  

Saving energy via changing people's habits may have a major impact. Yet, in order to minimise discomfort, 

careful evaluation based on actual facts is required when adopting energy-saving behavioural modifications. 

To fill this gap, this article suggests a data-driven approach to gauging the comfort and energy savings 

potential of occupant behaviour changes. Using residential data for model training and a School-Based 

Optimization approach for optimising the process and computing energy consumption and occupant comfort, 

the proposed approach has 3 components: (1) machine learning model for low energy consumption; (2) 

occupant behaviour models; and (3) occupant comfort models. The suggested strategy was put to the test 

using actual data gathered from neighbourhoods. The experimental findings indicated that behavioural 

energy savings were possible, with occupant comfort significantly 

increased. 
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1. Introduction. 

The construction industry is responsible for a significant portion of global warming [1, 2], using up 40% of 

all supplied energy and producing 30% of all CO2 emissions. More energy can be saved in this area than in 

transportation or manufacturing [3]. People spend the vast majority of their time inside buildings, making it 

difficult to reduce energy use without sacrificing comfort, health, or productivity [4]. It calls for in-depth 

knowledge of the relevant parameters and a comparison of various options. One of the most influential 

variables in a building's energy use is the actions of its occupants. Saving energy via changing people's habits 

may have a major impact. Parker et al. [5] provided evidence that the energy consumption of 

otherwisecomparable buildings may vary by as much as a factor of three due to variations in tenant 

behaviour. Hong and Lin [6] ran a simulation of three similar workplaces with varied occupant behaviours 

and found that frugality resulted in a 50% decrease in energy consumption compared to the baseline model, 

while wastefulness resulted in a 90% increase. Bonte et al. [7] used simulations to examine the effect of 

various occupant actions on building energy consumption and thermal perceptions, comparing the findings 

of the simulations to the standard French design method. The findings demonstrated that occupant behaviour 

has a considerable influence. Only residents' fixed schedules are considered. For instance, it presupposes that 

blinds remain completely open in the winter to maximise solar heat intake. Yet, occupants may use their 

blinds in a variety of ways, based on their own tastes and needs. So, the true heating energy demand is 

greater, or the thermal sense of the occupants is lower, in comparison to the French design approach because 

of the decreased solar heat gain. Yet, ensuring the comfort of the inhabitants is not compromised while 

implementing energy-saving. The goal of energysaving education is to change the ways in which residents 

behave by disseminating information about and guidance with implementing energy-saving measures [8]. 

Ouyang and Hokao [9] found that energy-saving education may reduce residential power usage by almost 

10% on average. The goal of eco-feedback is to change people's behaviour for the better by showing them 

their energy use patterns over time and in real time. The quick effect of eco-feedback systems on energy 

savings has been shown in a number of studies (e.g., [10,11]). Residents may gauge their own consumption 

levels in relation to those of their friends and neighbours via these interactions. By sharing their own usage 

data, Gulbinas and Taylor [12] were able to significantly reduce energy costs for a whole office complex. 

Gamification is the use of games to motivate and educate people to adopt more energy-efficient lifestyles. 

Reeves et al. [13], for instance, created a game in which players reduced their energy use by making smarter 

decisions while renovating a digital house. In conclusion, building automation systems regulate structures in 
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a manner that prioritises the convenience of the building's inhabitants while also reducing the facility's 

carbon footprint and operating costs [14]. Prediction models for a building's energy usage are a vital 

component of optimisation algorithms for evaluating alternative methods of reducing energy consumption. 

Several existing optimisation studies have relied on physical models to mimic alternative methods of 

conserving energy. Authors in [15]-[16] wanted to know what the optimum setpoint temperature would be in 

terms of both worker output and HVAC energy consumption. Ascione et al. [17] provided an optimisation 

technique based on a linkage between EnergyPlus and MATLAB. For a single-family house in a mild 

environment, [18] optimized thermal comfort and minimise life-cycle expenses. In order to minimise the 

amount of energy used for heating, cooling, and lighting as well as the number of uncomfortable hours spent 

inside conventional high-rise office buildings, Zhao and Du [19] suggested a multi-objective optimisation 

technique in collaboration with DesignBuilder. Nevertheless, getting reliable findings from physical models 

takes a lot of time [20]. The large number of iterations needed by optimisation algorithms to converge makes 

their employment impractical in several circumstances. For this reason, optimisation methods were 

combined [21-23]. Despite the importance of all these ef forts, there is a dearth of practical data-driven 

strategies to improve occupant behaviour. Data from physical model simulations is the only source for most 

of the current research on optimising occupant behaviour (e.g., [21,24, 25,26]). A growing number of 

physical models include occupant behaviour (e.g., [27]), although these models cannot fully capture the 

complexity and unpredictability of real occupant activities [28]. Using a data-driven strategy has two main 

advantages. Second, they may be tailored to a specific building and its occupants, providing a more precise 

depiction of the impact of human behaviour on in-house resources like energy and comfort. Two, the 

accuracy of these procedures has been shown to be higher than that of physical ones [30]. Thus, several other 

application domains have effectively leveraged data-driven and machine-learning techniques to encourage 

behavioural changes like eco-driving [31].  

 

This work presents a genuine data-driven way to evaluate the potential of occupant behaviour in decreasing 

energy consumption and increasing comfort, filling a gap in the existing literature. The proposed approach is 

comprised of two main parts: (1) machine learning-based approach for building a training and testing model 

for residential data; (2) a SBO approach to optimize the entire process.   

 

2. Proposed Algorithm  

In the proposed approach we take real time data for energy minimization from Kaggle. The residential data is 

considered for training the model. We build a model by training it using the data and finally we test the 

model. The entire process is optimized by School Based Optimization approach.  

 

2.1. School Based Optimization Algorithm.  

Metaheuristic optimisation often involves generating a random population of candidate solutions and then 

systematically increasing the fitness of that population. This strategy is exemplified by algorithms like the 

eagle strategy and multiclass teaching-learning-based optimisation, which use multiple metaheuristics in 

order to search the entire search space (in the first stage) and zero in on the sub-region containing the most 

promising solutions (in the second stage) (MC-TLBO). Selecting and enacting the first stage termination 

criteria presents a difficulty in the use of two-stage algorithms. The complexity of the method rises because 

the termination criteria adds new, problem-specific tuning parameters. School-based optimisation (SBO), 

was presented to address this problem [32]. When applied to a school with many classrooms and more than 

one instructor, SBO, a multi-population metaheuristic algorithm, expands the pedagogical possibilities of the 

traditional one-teacher, one-classroom TLBO model. A group of instructors (one from each classroom) are 

pooled together at the conclusion of each iteration of the SBO algorithm after they have independently 

explored the search space using TLBO. Before each iteration, classroom instructors are shuffled to promote 

the sharing of lessons learned in different settings. On the basis of their fitness scores, instructors are 

randomly placed in classes using a roulette wheel. In addition, every new teacher placed in a classroom 

should be more physically fit than the incumbent. The best student (as determined by fitness) in each 

classroom c is chosen as the classroom's teacher, and all instructors are pooled together at the end of each 

iteration. Before each new iteration, each class uses a roulette wheel segmented by the instructors' fitness 

values to choose a new teacher from the pool. The SBO algorithm may take use of several teachers to direct 

the optimisation process thanks to the teacher assignment mechanism. As a consequence, the probability of 
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the algorithm settling on a local optimum is diminished by this process. When one classroom reaches a local 

optimum, for instance, the teacher's performance will have a lesser chance of being taken into account when 

choosing a new teacher for other classes. In addition, by choosing a superior educator from among the 

available options, the local ideal classroom may be rescued from its current condition. As long as the optimal 

answer has not changed after a certain number of analyses, the parallel classrooms will continue to 

communicate collaboratively until the condition for termination is reached.   

 

2.2. Training and Testing of data.  

The dataset is collected from Kaggle. Eighty percent of each dataset was used for training, ten percent for 

validation, and ten percent for testing. All datasets were included in the test set in this way. To facilitate the 

creation of small batches, the data was divided into training samples of the same period. We settled on a 

runtime of 512 frames, or around 6.6 seconds, which is sufficient for one or two whole phrases. Some 

training samples, as a consequence of this set time, cover two distinct listening test circumstances. The 

samples' labels were calculated as an average of the SI measurements made under each of the two 

circumstances, with the relative importance of each condition being proportional to the number of frames 

from each condition included in the training set used to create the sample. The optimal batch size, 

considering GPU memory, training time, and final performance, was determined to be 32. Using the Adam 

optimizer [38] and the Mean Squared Error (MSE) loss function, we trained the network using chunks of the 

training dataset. An early stopping technique was implemented, where the training was terminated if the 

learning rate was not reduced by half after 25 epochs without a new global minimum in validation cost. A 

maximum of 300 training epochs were permitted.  

 

3. Results and Discussion   

The approach is implemented using python and Matlab. The proposed algorithm is compared with the actual 

value, ACO [32], and GA [33]. Energy-priority, thermal-comfort-priority, visual-comfort-priority, and 

balanced solutions were all taken into account throughout the optimisation process. Both energy-priority and 

comfort-priority approaches prioritise reducing energy usage and comfort, respectively. While any of these 

approaches may show how much money can be saved or how much more comfortable life can be, they do 

not boost all three goals in the same way. By combining the three goals into a single one using the weighted 

sum approach, which gives each goal an equal amount of emphasis, a balanced solution is reached. Fig. 1 

displays the relationship between observed and predicted values of energy use. It is seen that the proposed 

approach makes the prediction which is closes to the actual value. ACO prediction diverts from that of the 

actual value, and GA has the worst performance. The performance gain of the proposed algorithm is due to 

better parameter optimization and convergence of SBO.   
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Fig. 1. Regression among predicted and actual cooling. 

 

Fig. 2 shows the regression between the actual and predicted energy consumption values, for the proposed 

approach, ACO and GA.  The predicted energy consumption values show a good agreement with the actual 

levels. It can be observed that the suggested method provides a forecast that is close to the actual number. 

The ACO forecast deviates from the actual value, and GA performs the worst. The suggested algorithm's 

improved performance is due to superior parameter optimisation and SBO convergence.  

 

 
Fig. 2. Proposed approach compared with the existing ones in terms of actual lighting energyconsumption.  

 

Figure 3 shows the total energy used together with the energy used by the three extreme and the moderate 

solutions. It can be observed that the suggested method predicts a value that is quite near to the actual value. 

The ACO model's forecast deviates from the true value, while the GA model performs the poorest. Improved 
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parameter optimisation and convergence of SBO are responsible for the suggested algorithm's performance 

boost.  

 

 
Fig. 3. Energy consumption comparison 

 The proposed approach is compared with ACO and GA in terms for convergence. It is evident from Fig. 4 

that the SBO converges better and faster as compared to ACO and GA. Here the convergence is measured in 

terms of effectiveness of minimizing energy. Fig. 4 shows that the proposed approach is most effectives in 

energy minimization.   

 
Fig. 4. Convergence performance of SBO 

 

The proposed framework is compared with the existing approaches in terms of thermal comfort in Fig. 5. 

The suggested method is found to perform best, while GA performs the worst. Better convergence of SBO 

and parameter optimisation are to credit for the suggested algorithm's performance boost.  
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Fig. 5. Thermal comfort comparison 

 

4. Conclusion.   

This research offered a genuine data-driven approach to evaluating occupant behaviour’s ability to 

accomplish these two goals (reduce energy consumption and improve comfort) in a single step. The 

suggested approach has two parts: a genetic algorithm-based optimisation model for optimising occupant 

behaviour, and a collection of machine learning-based occupant-behaviour-sensitive models for forecasting 

energy consumption and thermal and visual comfort. The suggested approach was put to the test and 

evaluated by instrumenting an office building and collecting data for around three months on energy usage, 

outside weather conditions, occupant behaviour, and occupant comfort. Models for data-driven prediction of 

cooling and lighting energy usage, thermal and visual occupant comfort, and other metrics were constructed 

using the gathered data and machine learning. The most reliable prediction models were then used to 

optimise occupant behaviour in the interest of lowering energy use and raising resident satisfaction. The 

models' results were compared to those of others that lacked occupant-behaviour variables to ensure that the 

behaviour features are really discriminatory.   

The findings of this study add to existing information in two main ways. First, this study provides a real-

data-driven method for hourly energy usage and comfort prediction that takes into account the actions of 

building occupants. The resultant models are able to better reflect the real-world complexity of occupant 

behaviour and its effect on occupant comfort and energy use because they have learned from actual building 

sensor data and genuine occupant input. This technology can more accurately estimate actual energy usage 

patterns and passenger comfort levels than can current data-driven machine-learning methods. Second, this 

study provides a quantitative method for incorporating occupant behaviour into the optimisation of a 

building's energy use. When prediction models are combined with optimisation, a potent tool is created for 

identifying the optimal adjustments in energy-use behaviour that lead to savings and improved comfort. 

Property owners, facility managers, tenants, and energy consultants may all benefit from its use in finding 

the most effective ways to reduce energy use via changes in behaviour. The suggested technique lays the 

way for behavioural energy efficiency and occupant engagement methods that use machine learning to 

motivate occupants to conserve energy without sacrificing their comfort or quality of life. Furthermore, we 

anticipate that such a real-data-driven strategy will become increasingly practical and desired with the rise of 

enhanced sensing and metering technologies and smart building systems.   
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