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Abstract 

Sessa [13], initiated the tradition of improving 

commutativity conditions in metrical common 

fixed point theorems. While doing so Sessa [13] 

introduced the notion of weak commutativity. 

Motivated by Sessa [13], Jungck [9] generalized 

the concept of weak commuting by defining the 

term compatible mappings and proved that the 

weakly commuting mappings are compatible but 

the converse is not true. In recent years, several 

authors have obtained coincidence point results 

for various classes of mappings on a complete 

metric space utilizing these concepts. In this 

paper, we prove some common fixed point 

theorems for six mappings involving Ciric’s type 

contractive condition in complete metric spaces. 

Our work generalizes some earlier results of 

Cho-Yoo [1] ,Jungck[9], Jang et al. [5],kang and 

Kim[12] and others. Some examples are also 

furnished to demonstrate the validity of the 

hypothesis. 
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1. INTRODUCTION AND PRELIMINARIES:  

 In recent years several definitions of conditions 

weaker than commutativity have appeared which 

facilitated significantly to extend the Jungck’s 

theorem and several others. Foremost among 

them is perhaps the weak commutativity 

condition introduced by Sessa [13] which can be 

described as follows: 

 

1.1 Definition:  

Let S and T be mappings of a metric space(𝑋, 𝑑) 

into itself. Then (S, T) is said to be weakly 

commuting pair if𝑑(𝑆𝑇𝑥, 𝑇𝑆𝑥) ≤ 𝑑(𝑇𝑥, 𝑆𝑥)for 

all𝑥 ∈ 𝑋. 

obviously a commuting pair is weakly commuting 

but its converse need not be true as is evident 

from the following example. 

 

1.2 Example: 

Consider the set X = [0, 1] with the usual metric. 

Let𝑆𝑥 =
𝑥

2
  and𝑇𝑥 =

𝑥

2+𝑥
  for every𝑥 ∈ 𝑋. Then 

for all𝑥 ∈ 𝑋 𝑆𝑇𝑥 =
𝑥

4+2𝑥
, 𝑇𝑆𝑥 =

𝑥

4+𝑥
 

 

Hence𝑆𝑇 ≠ 𝑇𝑆. ThusS and T do not commute. 

Again 

𝑑(𝑆𝑇𝑥, 𝑇𝑆𝑥) = |
𝑥

4 + 2𝑥
−

𝑥

4 + 𝑥
| =

𝑥2

(4 + 𝑥)(4 + 2𝑥)
 

≤
𝑥2

(4 + 2𝑥)
=

𝑥

2
−

𝑥

2 + 𝑥
= 𝑑(𝑆𝑥, 𝑇𝑥) 

and so S and T commute weakly. 

 

Obviously, the class of weakly commuting is 

wider and includes commuting mappings as 

subclass. 

Jungck [8] has observed that for X = R if Sx = x3 

and Tx = 2x3 then S and T are not weakly 

commuting. Thus it is desirable to a less 

restrictive concept which he termed as 

‘compatibility’ the class of compatible mappings 

is still wider and includes weakly commuting 

mappings as subclass as is evident from the 

following definition of Jungek [8]. 

 

1.3 Definition: 

Two self mappings S and T of a metric 

space(𝑋, 𝑑)  are compatible if and only 

if lim
𝑛→∞

𝑑(𝑆𝑇𝑥𝑛, 𝑇𝑆𝑥𝑛) = 0, whenever{𝑥𝑛} is a 

sequence in X. such that lim
𝑛→∞

𝑆𝑥𝑛 = lim
𝑛→∞

𝑇𝑥𝑛 = 𝑡 

for some𝑡 ∈ 𝑋. 

Clearly any weakly commuting pair {S,T} in 

compatible but the converse need not be true as 

can be seen in the following example. 

 

1.4 Example: 

Let Sx = x3 and Tx = 2x3 with X = R with the usual 

metric. Then S and T are compatible,  
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Since|𝑇𝑥 − 𝑆𝑥| = |𝑥3| → 0if and only if|𝑆𝑇𝑥 −
𝑇𝑆𝑥| = 6|𝑥9| → 0but|𝑆𝑇𝑥 − 𝑇𝑆𝑥| ≤ |𝑇𝑥 − 𝑆𝑥|is 

not true forall𝑥 ∈ 𝑋,sayforexample at x = 1. 

 

1.5 Proposition: 

Let S and T be continuous self mapping on X. 

Then the pair (S, T) is compatible on X. where as 

in (Jungck [10], Gajic [2]) demonstrated by 

suitable examples that if S and T are 

discontinuous then the two concepts are 

independent of each other. The following 

examples also support this observation. 

 

1.6 Example: 

Let X = R with the usual metric we 

define𝑆, 𝑇: 𝑋 → 𝑋 as follows. 

𝑆𝑥 = {1/𝑥2𝑥 ≠ 0
0  𝑥 = 0

 and  𝑇𝑥 = {1/𝑥3𝑥 ≠ 0
0  𝑥 = 0

 

Both S and T are discontinuous at x = 0 and for 

any sequence{𝑥𝑛}  in X, we have𝑑 (𝑆𝑇𝑥𝑛, 𝑇𝑆𝑥𝑛) =

0. Hence the pair (S,T) is compatible.  

 

1.7 Example:  

Now we define 

 𝑆𝑥 = {
1/𝑥3,             𝑥 > 1
1,          0 ≤ 𝑥 ≤ 1 
0,                   𝑥 < 0

 and  

 𝑇𝑥 = {
−1/𝑥3,             𝑥 > 1
1,          0 ≤ 𝑥 ≤ 1 
0,                   𝑥 < 0

 

 

observe that the restriction of S and T 

on(−∞, 1]are equal. 

Thus we take a sequence{𝑥𝑛} in (1, ∞). 

Then{𝑆𝑥𝑛} ⊂ (0, 1) and {𝑇𝑥𝑛} ⊂ (−1, 0) 

Thus, for every n, TTxn = 0, TSxn = 1, STxn = 0, 

SSxn =1. So that  

d (STxn, TTxn) = 0,d (TSxn, TTxn) = 0 for every𝑛 ∈
𝑁.  

This shows that the pair (S, T) is compatible of 

type (A). Now let xn = n, 𝑛 ∈ 𝑁. Then𝑇𝑥𝑛 → 0, 

𝑆𝑥𝑛 → 0 as 𝑛 → ∞ and 𝑆𝑇𝑥𝑛 = 0, 𝑇𝑆𝑥𝑛 = 1 for 

every 𝑛 ∈ 𝑁 and so𝑑(𝑆𝑇𝑥, 𝑇𝑆𝑥) ≠ 0 as 𝑛 → ∞, 

hence the pair (S, T) is not compatible. 

 

2. MAIN RESULTS 

The following Lemma is the key in proving our 

result. Its proof is similar to that of Jungck [7]. 

 

2.1 Lemma : 

Let {𝑦𝑛}be a sequence in a complete metric space 

(𝑋, 𝑑). If there exists a 𝑘 ∈ (0,1)such 

that𝑑(𝑦𝑛+1, 𝑦𝑛) ≤ 𝑘(𝑦𝑛, 𝑦𝑛−1) for all n, then{𝑦𝑛} 

converges to a point in X. 

Theorem 2.2:Let (𝑋, 𝑑) be a complete metric 

space. Let A, B, S, T, I and J be self mappings 

from a complete metric space (𝑋, 𝑑) into itself 

satisfying the following conditions: 

(i) 𝐴𝐵(𝑋) ⊂ 𝐽(𝑋),  𝑆𝑇(𝑋) ⊂ 𝐼(𝑋) … (1) 

(ii) d(𝐴𝐵𝑥, 𝑆𝑇𝑦)≤𝛽1 max{𝑑(𝐴𝐵𝑥, 𝐼𝑥) , 𝑑(𝑆𝑇𝑦, 𝐽𝑦),
1

2
[𝑑(𝐴𝐵𝑥, 𝐽𝑦) 

+𝑑(𝑆𝑇𝑦 , 𝐼𝑥)], 𝑑(𝐼𝑥, 𝐽𝑦)} + 𝛽2 max {𝑑(𝐴𝐵𝑥, 𝐼𝑥), 𝑑(𝑆𝑇𝑦, 𝐽𝑦)} 

+𝛽3 max {𝑑(𝐴𝐵𝑥, 𝐽𝑦), 𝑑(𝑆𝑇𝑦, 𝐼𝑥)} … (2) 
 

for all 𝑥, 𝑦 ∈ 𝑋 where 𝛽1, 𝛽2, 𝛽3 ≥ 0,  0 < 𝛽 =
𝛽1 + 𝛽2 + 2𝛽3 ≤ 1(𝛽1, 𝛽2, 𝛽3are non-negative 

real numbers) 

Suppose that 

(iii) One of AB, ST, I and J is continuous…(3) 

(iv) The pairs (AB, I) and (ST,J) are compatible 

on X.  …(4) 

Then the mappings AB, ST, I and J have a unique 

common fixed point in X. 

Furthermore, if the pairs (A,B), (A,I), (B,I), (S,T), 

(S,J), (T,J) are commuting mappings then the 

mappings A, B, S, T, I and J have unique 

common fixed point. 

 

Proof: Let 𝑥0 ∈ 𝑋 be an arbitrary point. By (1), 

since 𝐴𝐵(𝑋) ⊂ 𝐽(𝑋), we can choose a point 𝑥1 in 

𝑋 such that 𝐴𝐵𝑥0 = 𝐽𝑥1.   Also, since 𝑆𝑇(𝑋) ⊂
𝐼(𝑋), we can fixed a point 𝑥2 with 𝑆𝑇𝑥1 = 𝐼𝑥2 

and so on. Proceeding in the similar manner, we 

can define a sequence {𝑧𝑛} in 𝑋 such that for 𝑛 =
0,1,2,3 … 

𝑧2𝑛+1  = 𝐽𝑥2𝑛+1 = 𝐴𝐵𝑥2𝑛, 

 𝑧2𝑛  = 𝐼𝑥2𝑛 = 𝑆𝑇𝑥2𝑛−1  … (5) 

 

Now, we shall show that {𝑧𝑛} is a Cauchy 

sequence.  

Using (2), we have 
𝑑(𝑧2𝑛+1, 𝑧2𝑛+2) = 𝑑(𝐴𝐵𝑥2𝑛 , 𝑆𝑇𝑥2𝑛+1) 

≤ 𝛽1max  {𝑑(𝐴𝐵𝑥2𝑛 , 𝐼𝑥2𝑛), 𝑑(𝑆𝑇𝑥2𝑛+1, 𝐽𝑥2𝑛+1), 
1

2
[𝑑(𝐴𝐵𝑥2𝑛 , 𝐽𝑥2𝑛+1) + 𝑑(𝑆𝑇𝑥2𝑛+1, 𝐼𝑥2𝑛)], 𝑑(𝐼𝑥2𝑛 , 𝐽𝑥2𝑛+1)} 

+𝛽2max  {𝑑(𝐴𝐵𝑥2𝑛 , 𝐼𝑥2𝑛), 𝑑(𝑆𝑇𝑥2𝑛+1, 𝐽𝑥2𝑛+1)} 

+𝛽3 𝑚𝑎𝑥 {𝑑(𝐴𝐵𝑥2𝑛 , 𝐽𝑥2𝑛+1), 𝑑(𝑆𝑇𝑥2𝑛+1, 𝐼𝑥2𝑛)} 

≤ 𝛽1max  {𝑑(𝑧2𝑛+1, 𝑧2𝑛), 𝑑(𝑧2𝑛+2, 𝑧2𝑛+1),
1

2
[𝑑(𝑧2𝑛+1, 𝑧2𝑛+1) 

+𝑑(𝑧2𝑛+2, 𝑧2𝑛)], 𝑑(𝑧2𝑛 , 𝑧2𝑛+1)} 

+𝛽2max  {𝑑(𝑧2𝑛+1, 𝑧2𝑛), 𝑑(𝑧2𝑛+2, 𝑧2𝑛+1)} 

+𝛽3 𝑚𝑎𝑥 {𝑑(𝑧2𝑛+1, 𝑧2𝑛+1), 𝑑(𝑧2𝑛+2, 𝑧2𝑛)} 

or,  𝑑(𝑧2𝑛+1, 𝑧2𝑛+2) ≤ 

𝛽1max  {𝑑(𝑧2𝑛 , 𝑧2𝑛+1), 𝑑(𝑧2𝑛+1, 𝑧2𝑛+2),
1

2
[𝑑(𝑧2𝑛 , 𝑧2𝑛+1) 

+𝑑(𝑧2𝑛+1, 𝑧2𝑛+2)], 𝑑(𝑧2𝑛 , 𝑧2𝑛+1)} 

+𝛽2max  {𝑑(𝑧2𝑛 , 𝑧2𝑛+1), 𝑑(𝑧2𝑛+1, 𝑧2𝑛+2)} 

+𝛽3 𝑚𝑎𝑥 {𝑑(𝑧2𝑛 , 𝑧2𝑛+1), 𝑑(𝑧2𝑛+1, 𝑧2𝑛+2)}… (6) 

 

where 0 < 𝛽 = 𝛽1 +  𝛽2 + 2𝛽3 < 1. 
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In (6), if 𝑑(𝑧2𝑛+1, 𝑧2𝑛+2) >  𝑑(𝑧2𝑛, 𝑧2𝑛+1) for 

some positive integer n, then we get  

𝑑(𝑧2𝑛+1, 𝑧2𝑛+2) ≤ 𝛽 𝑑(𝑧2𝑛+1, 𝑧2𝑛+2) 

 

which is a contradiction. Then, we obtain 

 𝑑(𝑧2𝑛+1, 𝑧2𝑛+2) ≤ 𝛽 𝑑(𝑧2𝑛, 𝑧2𝑛+1) 

Similarly, we get 

 𝑑(𝑧2𝑛, 𝑧2𝑛+1) = 𝑑(𝐴𝐵𝑥2𝑛, 𝑆𝑇𝑥2𝑛−1) 
 

≤ 𝛽1max  {𝑑(𝐴𝐵𝑥2𝑛 , 𝐼𝑥2𝑛), 𝑑(𝑆𝑇𝑥2𝑛−1, 𝐽𝑥2𝑛−1), 
1

2
[𝑑(𝐴𝐵𝑥2𝑛 , 𝐽𝑥2𝑛−1) + 𝑑(𝑆𝑇𝑥2𝑛−1, 𝐼𝑥2𝑛)], 𝑑(𝐼𝑥2𝑛 , 𝐽𝑥2𝑛−1)}

+ 𝛽2max  {𝑑(𝐴𝐵𝑥2𝑛 , 𝐼𝑥2𝑛), 𝑑(𝑆𝑇𝑥2𝑛−1, 𝐽𝑥2𝑛−1)}
+ 𝛽3 𝑚𝑎𝑥 {𝑑(𝐴𝐵𝑥2𝑛 , 𝐽𝑥2𝑛−1), 𝑑(𝑆𝑇𝑥2𝑛−1, 𝐼𝑥2𝑛)} 

≤ 𝛽1max  {𝑑(𝑧2𝑛+1, 𝑧2𝑛), 𝑑(𝑧2𝑛 , 𝑧2𝑛−1),
1

2
[𝑑(𝑧2𝑛+1, 𝑧2𝑛−1) 

+𝑑(𝑧2𝑛 , 𝑧2𝑛)], 𝑑(𝑧2𝑛 , 𝑧2𝑛−1)} + 𝛽2𝑚𝑎𝑥 {𝑑(𝑧2𝑛+1, 𝑧2𝑛), 
𝑑(𝑧2𝑛 , 𝑧2𝑛−1)} + 𝛽3 𝑚𝑎𝑥 {𝑑(𝑧2𝑛+1, 𝑧2𝑛−1), 𝑑(𝑧2𝑛 , 𝑧2𝑛)} 

≤ 𝛽1 max{𝑑(𝑧2𝑛+1, 𝑧2𝑛), 𝑑(𝑧2𝑛 , 𝑧2𝑛−1),
1

2
[𝑑(𝑧2𝑛+1, 𝑧2𝑛) 

+𝑑(𝑧2𝑛 , 𝑧2𝑛−1)], 𝑑(𝑧2𝑛 , 𝑧2𝑛−1)} + 𝛽2𝑚𝑎𝑥{𝑑(𝑧2𝑛+1, 𝑧2𝑛), 
𝑑(𝑧2𝑛 , 𝑧2𝑛−1)} + 𝛽3 𝑚𝑎𝑥 {𝑑(𝑧2𝑛+1, 𝑧2𝑛), 𝑑(𝑧2𝑛 , 𝑧2𝑛−1)} (7) 

 

In (7), if 𝑑(𝑧2𝑛+1, 𝑧2𝑛) > 𝑑(𝑧2𝑛, 𝑧2𝑛−1),  then we 

get𝑑(𝑧2𝑛+1, 𝑧2𝑛) ≤ 𝛽𝑑(𝑧2𝑛+1, 𝑧2𝑛), which is a 

contradiction.  

Thus, we get 
(𝑧2𝑛+1, 𝑧2𝑛) ≤ 𝛽𝑑(𝑧2𝑛 , 𝑧2𝑛−1) for 𝑛 = 1,2,3, … 

where 0 < 𝛽 < 1 

 

Now, by induction  
 𝑑(𝑧2𝑛, 𝑧2𝑛+1) ≤ 𝛽 𝑑(𝑧2𝑛−1, 𝑧2𝑛) 

 ⋮ 
 ⋮ 
 ≤ 𝛽𝑛 𝑑(𝑧0, 𝑧1) 

 

Again, for any 𝑚 > 𝑛, we have 
(𝑧𝑛 , 𝑧𝑚) ≤ 𝑑(𝑧𝑛, 𝑧𝑛+1) + 𝑑(𝑧𝑛+1, 𝑧𝑛+2) + …+ 

𝑑(𝑧𝑚−1, 𝑧𝑚) ≤ [𝛽𝑛 + 𝛽𝑛+1 + ⋯ + 𝛽𝑚−1]𝑑(𝑧1, 𝑧0) ≤

 
𝛽𝑛

1−𝛽
𝑑(𝑧1, 𝑧0) 

 

This implies that 𝑑(𝑧𝑛, 𝑧𝑚) → 0 as 𝑛, 𝑚 → ∞ . 
Hence, {𝑧𝑛}defined by (5) is a Cauchy sequence. 

Since, 𝑋 is complete there exists a point 𝑧 in 𝑋 

such that lim
𝑛→∞

𝑧𝑛 = 𝑧i.e.{𝑧𝑛} converges to some 

𝑧 ∈ 𝑋. 
Therefore, the sequences 
𝑧2𝑛+1 =  𝐴𝐵𝑥2𝑛 = 𝐽𝑥2𝑛+1 and 𝑧2𝑛 =  𝑆𝑇𝑥2𝑛−1 =
𝐼𝑥2𝑛, 

 

which are subsequences of {𝑧𝑛}  also, converges 

to a point 𝑧. 
i.e.  lim

𝑛→∞
𝐴𝐵𝑥2𝑛 = lim

𝑛→∞
𝐽𝑥2𝑛+1 = 𝑧 and  

 lim
𝑛→∞

𝑆𝑇𝑥2𝑛−1 = lim
𝑛→∞

𝐼𝑥2𝑛 = 𝑧 

 

Now, let 𝐼 is continuous then the sequences 

{𝐼2𝑥2𝑛} and {𝐼𝐵𝑥2𝑛} converge to the same point 

𝐼𝑧. Since {𝐴𝐵, 𝐼}  are compatible on 𝑋, so the 

sequence {𝐴𝐵𝐼𝑥2𝑛}  also converge to the same 

point 𝐼𝑧. i.e. 
 𝐼2𝑥2𝑛  → 𝐼𝑧, 𝐴𝐵𝐼𝑥2𝑛 → 𝐼𝑧  as 𝑛 → ∞. 

By (2), we get 
𝑑(𝐴𝐵𝐼𝑥2𝑛 , 𝑆𝑇𝑥2𝑛−1)≤ 

𝛽1max  {𝑑(𝐴𝐵𝐼𝑥2𝑛 , 𝐼2𝑥2𝑛), 𝑑(𝑆𝑇𝑥2𝑛−1, 𝐽𝑥2𝑛−1), 
1

2
[𝑑(𝐴𝐵𝐼𝑥2𝑛 , , 𝐽𝑥2𝑛−1) + 𝑑(𝑆𝑇𝑥2𝑛−1, 𝐼2𝑥2𝑛)], 

𝑑(𝐼2𝑥2𝑛 , 𝐽𝑥2𝑛−1)} 

+𝛽2max  {𝑑(𝐴𝐵𝐼𝑥2𝑛 , 𝐼2𝑥2𝑛), 𝑑(𝑆𝑇𝑥2𝑛−1, 𝐽𝑥2𝑛−1)} 

+𝛽3 𝑚𝑎𝑥 {𝑑(𝐴𝐵𝐼𝑥2𝑛 , 𝐽𝑥2𝑛−1), 𝑑(𝑆𝑇𝑥2𝑛−1, 𝐼2𝑥2𝑛)} 

Letting 𝑛 → ∞,  we have 

 

 𝑑(𝐼𝑧, 𝑧)≤ 𝛽1 max{𝑑(𝐼𝑧, 𝐼𝑧) , 𝑑(𝑧, 𝑧),
1

2
[𝑑(𝐼𝑧, 𝑧) +

𝑑(𝐼𝑧, 𝑧)], 𝑑(𝐼𝑧, 𝑧)} 
 +𝛽2max  {𝑑(𝐼𝑧, 𝐼𝑧), 𝑑(𝑧, 𝑧)} +
𝛽3 max {𝑑(𝐼𝑧, 𝑧), 𝑑(𝑧, 𝐼𝑧)} 

 ≤( 𝛽1  +  𝛽3) 𝑑(𝐼𝑧, 𝑧) 

 

 

which is a contradiction as  𝛽1 + 𝛽3 <
1, therefore 
 𝑑(𝐼𝑧, 𝑧) = 0 
or,𝐼𝑧 = 𝑧. 

Again, by using (2), we get 
 𝑑(𝐴𝐵𝑧, 𝑆𝑇𝑥2𝑛−1) ≤

 𝛽1 max{𝑑(𝐴𝐵𝑧, 𝐼𝑧) , 𝑑(𝑆𝑇𝑥2𝑛−1, 𝐽𝑥2𝑛−1),
1

2
[𝑑(𝐴𝐵𝑧, 𝐽𝑥2𝑛−1) 

+𝑑(𝑆𝑇𝑥2𝑛−1 , 𝐼𝑧)], 𝑑(𝐼𝑧, 𝐽𝑥2𝑛−1)}
+ 𝛽2max  {𝑑(𝐴𝐵𝑧, 𝐼𝑧), 𝑑(𝑆𝑇𝑥2𝑛−1, 𝐽𝑥2𝑛−1)}
+ 𝛽3 max {𝑑(𝐴𝐵𝑧, 𝐽𝑥2𝑛−1), 𝑑(𝑆𝑇𝑥2𝑛−1, 𝐼𝑧)} 

on letting 𝑛 → ∞,  we get  

𝑑(𝐴𝐵𝑧, 𝑧)≤ 𝛽1 max{𝑑(𝐴𝐵𝑧, 𝑧) , 𝑑(𝑧, 𝑧),
1

2
[𝑑(𝐴𝐵𝑧, 𝑧) 

 +𝑑(𝑧, 𝑧)], 𝑑(𝑧, 𝑧)} + 𝛽2max  {𝑑(𝐴𝐵𝑧, 𝑧), 𝑑(𝑧, 𝑧)} 

 

+𝛽3 max {𝑑(𝐴𝐵𝑧, 𝑧), 𝑑(𝑧, 𝑧)} 

 (𝛽1 + 𝛽2 + 𝛽3) 𝑑(𝐴𝐵𝑧, 𝑧) 

 

which is a contradiction as 𝛽1 +  𝛽2 + 𝛽3 < 1. 

Therefore, we get  𝐴𝐵𝑧 = 𝑧 . 
Since  𝐴𝐵(𝑋) ⊂ 𝐽(𝑋) and 𝑧 is in the range of 

AB i.e.  𝑧 ∈ 𝐴𝐵(𝑋). Therefore, there exists a 

point 𝑧′ ∈ 𝑋 such that 𝑧 = 𝐴𝐵𝑧 = 𝐽𝑧′. 
Now,  
 𝑑(𝑧, 𝑆𝑇𝑧′)= 𝑑(𝐴𝐵𝑧, 𝑆𝑇𝑧′) 
 

≤ 𝛽1 max{𝑑(𝐴𝐵𝑧, 𝐼𝑧) , 𝑑(𝑆𝑇𝑧′, 𝐽𝑧′),
1

2
[𝑑(𝐴𝐵𝑧, 𝐽𝑧′) 

 +𝑑(𝑆𝑇𝑧′, 𝐼𝑧)], 𝑑(𝐼𝑧, 𝐽𝑧′)} +
𝛽2max  {𝑑(𝐴𝐵𝑧, 𝐼𝑧), 𝑑(𝑆𝑇𝑧′, 𝐽𝑧′)} 

+𝛽3 max {𝑑(𝐴𝐵𝑧, 𝐽𝑧′), 𝑑(𝑆𝑇𝑧′, 𝐼𝑧)} 

≤ 𝛽1 max{𝑑(𝑧, 𝑧) , 𝑑(𝑆𝑇𝑧′, 𝑧),
1

2
[𝑑(𝑧, 𝑧)

+ 𝑑(𝑆𝑇𝑧′, 𝑧)], 𝑑(𝑧, 𝑧)} 

+𝛽2 max {𝑑(𝑧, 𝑧), 𝑑(𝑆𝑇𝑧′, 𝑧)}
+ 𝛽3 max  {𝑑(𝑧, 𝑧), 𝑑(𝑆𝑇𝑧′, 𝑧)} 
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or, 𝑑(𝑧, 𝑆𝑇𝑧′) ≤(𝛽1 + 𝛽2 + 𝛽3) 𝑑(𝑆𝑇𝑧′, 𝑧)which is 

a contradiction as 𝛽1 +  𝛽2 +  𝛽3 < 1, which gives 

𝑧 = 𝑆𝑇𝑧′. Therefore, 𝑧 = 𝑆𝑇𝑧′ = 𝐽𝑧′, which shows 

that 𝑧′ is a coincidence point of ST and J. 

 

Since, ST and J are compatible on 𝑋 and 𝐽𝑧′ =
𝑆𝑇𝑧′ = 𝑧.  Therefore, we have 𝑑(𝐽𝑆𝑇𝑧′, 𝑆𝑇𝐽𝑧′) = 

0.  

Hence, 𝐽𝑧 = 𝐽𝑆𝑇𝑧′ = 𝑆𝑇𝐽𝑧′ = 𝑆𝑇𝑧 

or,𝐽𝑧 = 𝑆𝑇𝑧.  

By (2), we get 
 𝑑(𝑧, 𝐽𝑧) = 𝑑(𝐴𝐵𝑧, 𝑆𝑇𝑧) 

≤ 𝛽1 max{𝑑(𝐴𝐵𝑧, 𝐼𝑧) , 𝑑(𝑆𝑇𝑧, 𝐽𝑧),
1

2
[𝑑(𝐴𝐵𝑧, 𝐽𝑧)

+ 𝑑(𝑆𝑇𝑧, 𝐼𝑧)], 𝑑(𝐼𝑧, 𝐽𝑧)} 

+𝛽2max   {𝑑(𝐴𝐵𝑧, 𝐼𝑧), 𝑑(𝑆𝑇𝑧, 𝐽𝑧)}
+ 𝛽3 max  {𝑑(𝐴𝐵𝑧, 𝐽𝑧), 𝑑(𝑆𝑇𝑧, 𝐼𝑧)} 

≤  𝛽1 max{𝑑(𝑧, 𝑧) , 𝑑(𝐽𝑧, 𝐽𝑧),
1

2
[𝑑(𝑧, 𝐽𝑧)

+ 𝑑(𝑧, 𝐽𝑧)], 𝑑(𝑧, 𝐽𝑧)} 

+𝛽2max   {𝑑(𝑧, 𝑧), 𝑑(𝐽𝑧, 𝐽𝑧)} + 𝛽3 max  {𝑑(𝑧, 𝐽𝑧), 𝑑(𝐽𝑧, 𝑧)} 

or,𝑑(𝑧, 𝐽𝑧) ≤ (𝛽1 + 𝛽3 ) 𝑑(𝑧, 𝐽𝑧)a contradiction so that 

𝑧 = 𝐽𝑧 = 𝑆𝑇𝑧, which shows that 𝑧 is a common 

fixed point of AB, ST, I and J. 

 

Now, suppose that 𝐴𝐵 is continuous so that the 

sequences {𝐴𝐵2𝑥2𝑛} and {𝐴𝐵𝐼𝑥2𝑛} converge to 

𝐴𝐵𝑧. Since, {𝐴𝐵, 𝐼} are compatible on X, it 

follows that {𝐼𝐴𝐵𝑥2𝑛}also converges to 𝐴𝐵𝑧 i.e. 

𝐴𝐵2𝑥2𝑛 → 𝐴𝐵𝑧, 𝐼𝐴𝐵𝑥2𝑛 → 𝐴𝐵𝑧 as  𝑛 →  ∞.  

By (2), we have  

 
𝑑(𝐴𝐵2𝑥2𝑛, 𝑆𝑇𝑥2𝑛−1)≤ 𝛽1 𝑚𝑎𝑥{𝑑(𝐴𝐵2𝑥2𝑛, 𝐼𝐴𝐵𝑥2𝑛) , 𝑑(𝑆𝑇𝑥2𝑛−1, 𝐽𝑥2𝑛−1), 

1

2
[𝑑(𝐴𝐵2𝑥2𝑛 , 𝐽𝑥2𝑛−1) + 𝑑(𝑆𝑇𝑥2𝑛−1 , 𝐼𝐴𝐵𝑥2𝑛)], 

𝑑(𝐼𝐴𝐵𝑥2𝑛 , 𝐽𝑥2𝑛−1)} 
+𝛽2 𝑚𝑎𝑥{𝑑(𝐴𝐵2𝑥2𝑛 , 𝐼𝐴𝐵𝑥2𝑛), 𝑑(𝑆𝑇𝑥2𝑛−1, 𝐽𝑥2𝑛−1)}

+ 𝛽3 𝑚𝑎𝑥 {𝑑 (𝐴𝐵
2

𝑥2𝑛, 𝐽𝑥2𝑛−1) , 𝑑(𝑆𝑇𝑥2𝑛−1, 𝐼𝐴𝐵𝑥2𝑛)} 

which on letting 𝑛 → ∞, reduces to  

𝑑(𝐴𝐵𝑧, 𝑧)≤  𝛽1 max{𝑑(𝐴𝐵𝑧, 𝐴𝐵𝑧) , 𝑑(𝑧, 𝑧),
1

2
[𝑑(𝐴𝐵𝑧, 𝑧)

+ 𝑑(𝐴𝐵𝑧, 𝑧)], 𝑑(𝐴𝐵𝑧, 𝑧)} 

+𝛽2max   {𝑑(𝐴𝐵𝑧, 𝐴𝐵𝑧), 𝑑(𝑧, 𝑧)}
+ 𝛽3 max  {𝑑(𝐴𝐵𝑧, 𝑧), 𝑑(𝑧, 𝐴𝐵𝑧)} 

 ≤ (𝛽1 +  𝛽3)𝑑(𝐴𝐵𝑧, 𝑧) 

 

which is a contradiction, yielding thereby 
 𝐴𝐵𝑧 = 𝑧 as 𝛽1 +  𝛽3 < 1. 

 

Since 𝑧 is in the range of 𝐴𝐵 and 𝐴𝐵(𝑋) ⊂ 𝐽(𝑋), 

there always exists a point 𝑧′  such that 𝐽𝑧′ = 𝑧 =

𝐴𝐵𝑧. Then  𝑑(𝐴𝐵2𝑥2𝑛 , 𝑆𝑇𝑧′) ≤

𝛽1 max{𝑑(𝐴𝐵2𝑥2𝑛 , 𝐼𝐴𝐵𝑥2𝑛) , 𝑑(𝑆𝑇𝑧′ , 𝐽𝑧′),
1

2
[𝑑(𝐴𝐵2𝑥2𝑛 , 𝐽𝑧′) 

+𝑑(𝑆𝑇𝑧′ , 𝐼𝐴𝐵𝑥2𝑛)], 𝑑(𝐼𝐴𝐵𝑥2𝑛 , 𝐽𝑧′)} 
+𝛽2 max {𝑑(𝐴𝐵2𝑥2𝑛 , 𝐼𝐴𝐵𝑥2𝑛), 𝑑(𝑆𝑇𝑧′, 𝐽𝑧′)} 

+𝛽3 max {𝑑(𝐴𝐵2𝑥2𝑛 , 𝐽𝑧′), 𝑑(𝑆𝑇𝑧′, 𝐼𝐴𝐵𝑥2𝑛)} 

which on letting 𝑛 → ∞ reduces to 

𝑑(𝑧, 𝑆𝑇𝑧′) ≤ 𝛽1 max{𝑑(𝑧, 𝑧) , 𝑑(𝑆𝑇𝑧′, 𝑧),
1

2
[𝑑(𝑧, 𝑧)

+ 𝑑(𝑆𝑇𝑧′, 𝑧)], 𝑑(𝑧, 𝑧)} 

+𝛽2max   {𝑑(𝑧, 𝑧), 𝑑(𝑆𝑇𝑧′, 𝑧)}
+ 𝛽3 max  {𝑑(𝑧, 𝑧), 𝑑(𝑆𝑇𝑧′, 𝑧)} 

 ≤ (𝛽1 +  𝛽2 +  𝛽3)𝑑(𝑆𝑇𝑧′, 𝑧), 

a contradiction which yields 
  𝑧 = 𝑆𝑇𝑧′ = 𝐽𝑧′.  
 

Thus, the pair (𝑆𝑇, 𝐽) has a coincidence point 𝑧′.  

Since, the pair (𝑆𝑇, 𝐽) is compatible on X and 

 𝐽𝑧′ = 𝑆𝑇𝑧′ = 𝑧,  we have  𝑑(𝐽𝑆𝑇𝑧′, 𝑆𝑇𝐽𝑧′) = 0  

[by def.of compatible].  

Hence,   𝐽𝑧 = 𝐽(𝑆𝑇𝑧′) = 𝑆𝑇(𝐽𝑧′) = 𝑆𝑇𝑧, which shows 

that 𝑆𝑇𝑧 = 𝐽𝑧. 
Further, by (2), we haved (𝐴𝐵𝑥2𝑛 , 𝑆𝑇𝑧)≤  𝛽1 𝑚𝑎𝑥{𝑑(𝐴𝐵𝑥2𝑛, 𝐼𝑥2𝑛), 

𝑑(𝑆𝑇𝑧, 𝐽𝑧),
1

2
[𝑑(𝐴𝐵𝑥2𝑛, 𝐽𝑧) 

 +𝑑(𝑆𝑇𝑧 , 𝐼𝑥2𝑛)], 𝑑(𝐼𝑥2𝑛 , 𝐽𝑧)} 

+𝛽2 𝑚𝑎𝑥{𝑑(𝐴𝐵𝑥2𝑛 , 𝐼𝑥2𝑛), 𝑑(𝑆𝑇𝑧, 𝐽𝑧)} 
+𝛽3 𝑚𝑎𝑥{𝑑(𝐴𝐵𝑥2𝑛 , 𝐽𝑧), 𝑑(𝑆𝑇𝑧, 𝐼𝑥2𝑛)} 

 

which on letting 𝑛 → ∞, we get 

𝑑(𝑧, 𝑆𝑇𝑧) ≤ 𝛽1 max{𝑑(𝑧, 𝑧) , 𝑑(𝑆𝑇𝑧, 𝑆𝑇𝑧),
1

2
[𝑑(𝑧, 𝑆𝑇𝑧)

+ 𝑑(𝑆𝑇𝑧, 𝑧)], 𝑑(𝑧, 𝑆𝑇𝑧)} 

 +𝛽2max   {𝑑(𝑧, 𝑧), 𝑑(𝑆𝑇𝑧, 𝑆𝑇𝑧)} +
𝛽3 max  {𝑑(𝑧, 𝑆𝑇𝑧), 𝑑(𝑆𝑇𝑧, 𝑧)} 

 ≤ ( 𝛽1 + 𝛽3) 𝑑(𝑧, 𝑆𝑇𝑧), 
 

a contradiction which implies that 𝑆𝑇𝑧 = 𝑧 = 𝐽𝑧as 
𝛽1 + 𝛽3<1 

Since, 𝑆𝑇(𝑋) ⊂ 𝐼(𝑋) and 𝑆𝑇𝑧 = 𝑧, then there 

exists a point 𝑧′′ in 𝑋 such that 𝐼𝑧′′ = 𝑧. Thus, 
𝑑(𝐴𝐵𝑧′′, 𝑧) = 𝑑(𝐴𝐵𝑧′′, 𝑆𝑇𝑧) 

≤ 𝛽1 𝑚𝑎𝑥{𝑑(𝐴𝐵𝑧′′, 𝐼𝑧") , 𝑑(𝑆𝑇𝑧, 𝐽𝑧),
1

2
[𝑑(𝐴𝐵𝑧′′, 𝐽𝑧) 

 +𝑑(𝑆𝑇𝑧, 𝐼𝑧′′)], 𝑑(𝐼𝑧′′, 𝐽𝑧)} 

 +𝛽2max {𝑑(𝐴𝐵𝑧′′, 𝐼𝑧′′), 𝑑(𝑆𝑇𝑧, 𝐽𝑧)} 

 +𝛽3 max {𝑑(𝐴𝐵𝑧′′, 𝐽𝑧), 𝑑(𝑆𝑇𝑧, 𝐼𝑧′′)} 

≤ 𝛽1 max{𝑑(𝐴𝐵𝑧′′, 𝑧) , 𝑑(𝑧, 𝑧),
1

2
[𝑑(𝐴𝐵𝑧′′ , 𝑧)

+ 𝑑(𝑧, 𝑧)], 𝑑(𝑧, 𝑧)} 

 +𝛽2max   {𝑑(𝐴𝐵𝑧′′, 𝑧), 𝑑(𝑧, 𝑧)} +
𝛽3 max  {𝑑(𝐴𝐵𝑧′′ , 𝑧), 𝑑(𝑧, 𝑧)} 

or,𝑑(𝐴𝐵𝑧′′ , 𝑧) ≤ (𝛽1 + 𝛽2 + 𝛽3) 𝑑(𝐴𝐵𝑧′′, 𝑧), 
 

a contradiction which implies that 
𝐴𝐵𝑧′′ = 𝑧 as  𝛽1 + 𝛽2 + 𝛽3 < 1. 

 

Again, since (𝐴𝐵, 𝐼) are compatible on 𝑋 and 

𝐴𝐵𝑧′′ = 𝐼𝑧′′ = 𝑧, we have 
 𝑑(𝐼𝐴𝐵𝑧′′ , 𝐴𝐵𝐼𝑧′′) = 0.  
 

Therefore, 𝐼𝑧 = 𝐼(𝐴𝐵𝑧′′) = 𝐴𝐵(𝐼𝑧′′) = 𝐴𝐵𝑧.  

Hence, 𝐴𝐵𝑧 = 𝐼𝑧 = 𝑧. Thus, we have proved that 𝑧 

is a common fixed point of AB, ST, I and J.  

Instead of AB or I, if the mappings ST or J is 

continuous, then the proof that 𝑧 is a common 

fixed point of AB, ST, I and J is similar. 
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To show that 𝑧 is unique, let u be another fixed 

point of AB, ST, I and J. Then 
𝑑(𝑧, 𝑢) = 𝑑(𝐴𝐵𝑧, 𝑆𝑇𝑢) 

 ≤ 𝛽1 max{𝑑(𝐴𝐵𝑧, 𝐼𝑧) , 𝑑(𝑆𝑇𝑢, 𝐽𝑢),
1

2
[𝑑(𝐴𝐵𝑧, 𝐽𝑢) +

𝑑(𝑆𝑇𝑢, 𝐼𝑧)], 𝑑(𝐼𝑧, 𝐽𝑢)} 

 +𝛽2max   {𝑑(𝐴𝐵𝑧, 𝐼𝑧), 𝑑(𝑆𝑇𝑢, 𝐽𝑢)} +
𝛽3 max  {𝑑(𝐴𝐵𝑧, 𝐽𝑢), 𝑑(𝑆𝑇𝑢, 𝐼𝑧)} 

 ≤ 𝛽1 max{𝑑(𝑧, 𝑧) , 𝑑(𝑢, 𝑢),
1

2
[𝑑(𝑧, 𝑢) +

𝑑(𝑢, 𝑧)], 𝑑(𝑧, 𝑢)} 

 +𝛽2max   {𝑑(𝑧, 𝑧), 𝑑(𝑢, 𝑢)} +
𝛽3 max  {𝑑(𝑧, 𝑢), 𝑑(𝑢, 𝑧)} 

or,𝑑(𝑧, 𝑢) ≤  (𝛽1 + 𝛽3) 𝑑(𝑧, 𝑢),  
 

a contradiction yielding thereby 
𝑧 = 𝑢 as  𝛽1 + 𝛽3 < 1. 

 

Finally, we will prove that 𝑧 is also a common 

fixed point of A, B, S, T, I and J. Let both the 

pairs (AB,I) and (ST,J) have a unique common 

fixed point 𝑧. Then 

Az = A(ABz) = A(BAz) = AB(Az) 

Az = A(Iz) = I(Az)  

Bz = B(ABz) = B(A(Bz)) = BA(Bz)= AB(Bz) 

Bz = B(Iz) = I(Bz)  

which implies that (AB,I) has common fixed 

points which are Az and Bz. We get, thereby Az = 

z = Bz = Jz = ABz, by virtue of uniqueness of 

common fixed point of pair (AB, I).  

Similarly, using the commutativity of (S,T), (S,J) 

and (T, J), Sz = z = Tz = Jz = STz can be shown.  

Now, we claim that Az = Sz (Bz = Tz), a common 

fixed point of both the pairs (AB,I) and (ST,J). 

We have  

 d(Az, Sz) = d(A(ABz), S(STz)) 

 = d(A(BAz), S(TSz)) 

 = d(AB(Az), ST(Sz)) 

 

≤ 𝛽1 max{𝑑(𝐴𝐵(𝐴𝑧), 𝐼(𝐴𝑧)), 𝑑(𝑆𝑇(𝑆𝑧), 𝐽(𝑆𝑧)),
1

2
[𝑑(𝐴𝐵(𝐴𝑧), 𝐽(𝑆𝑧)) 

+𝑑(𝑆𝑇(𝑆𝑧), 𝐽(𝐴𝑧))], 𝑑(𝐼(𝐴𝑧), 𝐽(𝑆𝑧))} 

+𝛽2max   {𝑑(𝐴𝐵(𝐴𝑧), 𝐼(𝐴𝑧)), 𝑑(𝑆𝑇(𝑆𝑧), 𝐽(𝑆𝑧))} 

+𝛽3 max  {𝑑(𝐴𝐵(𝐴𝑧), 𝐽(𝑆𝑧)), 𝑑(𝑆𝑇(𝑆𝑧), 𝐼(𝐴𝑧))} 

 

≤ 𝛽1 max{𝑑(𝐴𝑧, 𝐴𝑧) , 𝑑(𝑆𝑧, 𝑆𝑧),
1

2
[𝑑(𝐴𝑧, 𝑆𝑧) +

𝑑(𝑆𝑧, 𝐴𝑧)], 𝑑(𝐴𝑧, 𝑆𝑧)} 

 +𝛽2max   {𝑑(𝐴𝑧, 𝐴𝑧), 𝑑(𝑆𝑧, 𝑆𝑧))} +
𝛽3 max  {𝑑(𝐴𝑧, 𝑆𝑧), 𝑑(𝑆𝑧, 𝐴𝑧)} 

or,𝑑(𝐴𝑧, 𝑆𝑧) ≤ (𝛽1 + 𝛽3) 𝑑(𝐴𝑧, 𝑆𝑧),  

 

a contradiction which implies that 𝐴𝑧 =  𝑆𝑧. 

Similarly, Bz = Tz can be shown. Thus, z is the 

unique common fixed point of A, B, S, T, I and J. 

The following corollary follows immediately 

from our theorem (2.2). 

 

Corollary 2.3: Let (𝑋, 𝑑) be a complete metric 

space. Let A, B, S, T, I and J be self mappings 

from a complete metric space (𝑋, 𝑑) into itself 

satisfying the following conditions: 

(i) 𝐴𝐵(𝑋) ⊂ 𝐽(𝑋),  𝑆𝑇(𝑋) ⊂ 𝐼(𝑋)  

(ii) 𝑑(𝐴𝐵𝑥, 𝑆𝑇𝑦)≤ 𝛽1 max{𝑑(𝐴𝐵𝑥, 𝐼𝑥) , 𝑑(𝑆𝑇𝑦, 𝐽𝑦),
1

2
𝑑(𝐴𝐵𝑥, 𝐽𝑦), 

 
1

2
𝑑(𝑆𝑇𝑦, 𝐼𝑥), 𝑑(𝐼𝑥, 𝐽𝑦)} +

𝛽2 𝑚𝑎𝑥 {𝑑(𝐴𝐵𝑥, 𝐼𝑥), 𝑑(𝑆𝑇𝑦, 𝐽𝑦)} 

+𝛽3 max {𝑑(𝐴𝐵𝑥, 𝐽𝑦), 𝑑(𝑆𝑇𝑦, 𝐼𝑥)} 

for all 𝑥, 𝑦 ∈ 𝑋 where 𝛽1, 𝛽2, 𝛽3 ≥ 0, 𝛽1 + 𝛽2 +  2𝛽3 ≤

1(𝛽1, 𝛽2, 𝛽3 are non-negative real numbers) 

Suppose that 

(iii) One of AB, ST, I and J is continuous.  

(iv) The pairs (AB, I) and (ST,J) are 

compatible on X.   

 

Then the mappings AB, ST, I and J have a unique 

common fixed point in X. 

Furthermore, if the pairs (A,B), (A,I), (B,I), (S,T), 

(S,J), (T,J) are commuting mappings then the 

mappings A, B, S, T, I and J have unique 

common fixed point. 

If we put AB = A, ST = B in theorem (2.2), we 

get the following, which generalize the result of 

Jang et al. [5] in metric spaces. 

 

Corollary 2.4:Let(𝑋, 𝑑) be a complete metric 

space.Let A, B, S and T be self mappings from a 

complete metric space (𝑋, 𝑑)into  itself satisfying 

the conditions: 

(i) 𝐴(𝑋) ⊂ 𝑇(𝑋), 𝐵(𝑋) ⊂ 𝑆(𝑋) 

(ii) 𝑑(𝐴𝑥, 𝐵𝑦) ≤  𝛽1 max{𝑑(𝐴𝑥, 𝑆𝑥) , 𝑑(𝐵𝑦, 𝑇𝑦), 
1

2
[𝑑(𝐴𝑥, 𝑇𝑦) + 𝑑(𝐵𝑦, 𝑆𝑥)], 𝑑(𝑆𝑥, 𝑇𝑦)} 

+𝛽2max   {𝑑(𝐴𝑥, 𝑆𝑥), 𝑑(𝐵𝑦, 𝑇𝑦)}
+ 𝛽3 max {𝑑(𝐴𝑥, 𝑇𝑦), 𝑑(𝐵𝑦, 𝑆𝑥)} 

 

For all 𝑥, 𝑦 ∈X, where 0 < 𝛽 = 𝛽1 + 𝛽2 + 2𝛽3 < 1  

(𝛽1, 𝛽2 , 𝛽3 )are non-negative real numbers).  

(iii) Suppose that one of A, B, S and T is 

continuous.  

(iv) The pairs (𝐴, 𝑆)and (𝐵, 𝑇) are compatible 

on X then A, B, S and T have a unique common 

fixed point in X.  

Taking AB=A, ST=B, 𝛽2 = 0 in theorem (2.2), 

we obtain the following, which generalize the 

result of Cho-Yoo [1] in metric spaces. 

 

Corollary 2.5: Let (𝑋, 𝑑) be a complete metric 

space. Let A, B, S and T be mappings from a 

complete metric space (𝑋, 𝑑)into  itself satisfying 

the conditions: 

(i) 𝐴(𝑋) ⊂ 𝑇(𝑋), 𝐵(𝑋) ⊂ 𝑆(𝑋) 

(ii) 𝑑(𝐴𝑥, 𝐵𝑦) ≤

𝛽1 max{𝑑(𝐴𝑥, 𝑆𝑥) , 𝑑(𝐵𝑦, 𝑇𝑦),
1

2
[𝑑(𝐴𝑥, 𝑇𝑦) 

 +𝑑(𝐵𝑦, 𝑆𝑥)], 𝑑(𝑆𝑥, 𝑇𝑦)} 



BioGecko  Web of Science  
ISSN NO: 2230-5807  Vol 10 Issue 04 2021  
 

A Journal for New Zealand Herpetology 13 

+𝛽3 max {𝑑(𝐴𝑥, 𝑇𝑦), 𝑑(𝐵𝑦, 𝑆𝑥)} 

 

For all 𝑥, 𝑦 ∈X, where  0 < 𝛽 = 𝛽1 + 2𝛽3 < 1  (𝛽1 , 𝛽3  

are non-negative real numbers).  

(iii) Suppose that one of A, B, S and T is 

continuous.  

(iv) The pairs (𝐴, 𝑆)and (𝐵, 𝑇) are compatible 

on X then A, B, S and T have a unique common 

fixed point in X.  

If we put AB=A, ST=B, 𝛽2 = 0 and 𝛽3 = 0  in 

theorem (2.2), we obtain the following, which 

improve and generalize the result of Kang-Kim 

[12] and Jungck [9] in metric spaces. 

 

Corollary 2.6: Let (𝑋, 𝑑) be a complete metric 

space. Let A, B, S and T be mappings from a 

complete metric space (𝑋, 𝑑)into  itself satisfying 

the conditions: 

(i) 𝐴(𝑋) ⊂ 𝑇(𝑋), 𝐵(𝑋) ⊂ 𝑆(𝑋) 

(ii) 𝑑(𝐴𝑥, 𝐵𝑦) ≤

𝛽1 max{𝑑(𝐴𝑥, 𝑆𝑥) , 𝑑(𝐵𝑦, 𝑇𝑦),
1

2
[𝑑(𝐴𝑥, 𝑇𝑦) 

 +𝑑(𝐵𝑦, 𝑆𝑥)], 𝑑(𝑆𝑥, 𝑇𝑦)} 

 

For all 𝑥, 𝑦 ∈X, where  0 < 𝛽1 < 1  (𝛽1 is non-

negative real number).  

(iii) Suppose that one of A, B, S and T is 

continuous. 

(iv) The pairs (𝐴, 𝑆)and (𝐵, 𝑇) are compatible 

on X then A, B, S and T have a unique common 

fixed point in X.  

 

Example 2.7: Consider 𝑋 = [0,1] with the usual 

metric defined by  

 𝑑(𝑥, 𝑦) = ‖𝑥 − 𝑦‖ = |𝑥 − 𝑦| and 𝐹 =
𝑅 = Real Banach space. 

 

Define self mappings A, B, S, T, I and J by 

 𝐴𝑥 =
2𝑥

3
,   𝐵𝑥 =

3𝑥

4
,   𝑆𝑥 =

𝑥

4
,   𝑇𝑥 =

4𝑥

5
,    𝐼𝑥 =

𝑥

4
 and 𝐽𝑥 =

3𝑥

4
 for all 𝑥 ∈ 𝑋, 

respectively. 

Then, all the hypothesis oftheorem (2.2) are 

satisfied for 

𝛽1 =
1

5
, 𝛽2 =

1

3
 and 𝛽3 =

1

20
 where 𝛽1 + 𝛽2 +

2𝛽3 < 1. Hence, 0 is a unique common fixed 

point of A, B, S, T, I and J. 

Now, we give some examples to illustrate our 

corollary (2.4).  

 

Example 2.8: Let 𝑋 = [0, ∞) with the usual metric 

defined by 𝑑(𝑥, 𝑦) = ‖𝑥−𝑦‖ = |𝑥 − 𝑦| and 𝐸 = 𝑅 = 

Real Benach space. 

Define self mappings A, B, S, T : 𝑋 → 𝑋 by 

𝐴𝑥 = 𝐵𝑥 =
1

8
𝑥 + 1, 𝑆𝑥 = 𝑇𝑥 =

1

2
𝑥 + 1for all 𝑥 ∈ 𝑋, 

respectively. 

Now, we get 

 𝑑(𝐴𝑥, 𝐴𝑦) =
1

4
𝑑(𝑆𝑥, 𝑆𝑦) 

 ≤
1

4
𝑚𝑎𝑥{𝑑(𝐴𝑥, 𝑆𝑥), 𝑑(𝐴𝑦, 𝑆𝑦),

1

2
[𝑑(𝐴𝑥, 𝑆𝑦) +

𝑑(𝐴𝑦, 𝑆𝑥)], 𝑑(𝑆𝑥, 𝑆𝑦)} 

 +𝛽2𝑚𝑎𝑥{𝑑(𝐴𝑥, 𝑆𝑥), 𝑑(𝐴𝑦, 𝑆𝑦)} +
𝛽3𝑚𝑎𝑥{𝑑(𝐴𝑥, 𝑆𝑦), 𝑑(𝐴𝑦, 𝑆𝑥)} 

For all 𝑥, 𝑦 ∈ 𝑋, where 0 ≤ 𝛽2 + 2𝛽3 <
3

4
. Here, all the 

conditions of the corollary (2.4) are satisfied 

except the condition of compatibility of the pair 

(𝐴, 𝑆). Therefore, 𝐴 and 𝑆 don’t have a common 

fixed point in 𝑋.  

 

Example 2.9: Let 𝑋 = [0,1] with the usual metric 

defined by  

 𝑑(𝑥, 𝑦) = ‖𝑥−𝑦‖ = |𝑥 − 𝑦|and 𝐸 = 𝑅 = Real 

Benach space. 

 Define A, B, S and  T: 𝑋 → 𝑋 by 

𝐴𝑥 = 0, 𝐵𝑥 = {

1

4
 𝑖𝑓 𝑥 =

1

2
1

4
𝑥 𝑖𝑓 𝑥 ≠

1

2

 , 𝑆𝑥 = 𝑥,  𝑇𝑥 = {
1 𝑖𝑓 𝑥 =

1

2

𝑥 𝑖𝑓 𝑥 ≠
1

2

 

for all 𝑥 ∈ 𝑋 respectively. We get 

 𝑑(𝐴𝑥, 𝐵𝑦) = {

1

4
=

1

3
𝑑(𝐵𝑦, 𝑇𝑦) 𝑖𝑓 𝑦 =

1

2
1

4
𝑦 =

1

3
𝑑(𝐵𝑦, 𝑇𝑦) 𝑖𝑓 𝑦 ≠

1

2

 

 ≤
1

3
𝑚𝑎𝑥{𝑑(𝐴𝑥, 𝑆𝑥), 𝑑(𝐵𝑦, 𝑇𝑦),

1

2
[𝑑(𝐴𝑥, 𝑇𝑦) +

𝑑(𝐵𝑦, 𝑆𝑥)], 𝑑(𝑆𝑥, 𝑇𝑦)} 

 +𝑞 𝑚𝑎𝑥{𝑑(𝐴𝑥, 𝑆𝑥), 𝑑(𝐵𝑦, 𝑇𝑦)} +
𝑟 𝑚𝑎𝑥{𝑑(𝐴𝑥, 𝑇𝑦), 𝑑(𝐵𝑦, 𝑆𝑥)} 

 

For all 𝑥, 𝑦 ∈ 𝑋, where 0 ≤ 𝛽2 + 2𝛽3 <
2

3
.  

Therefore, all the conditions of corollary (2.4) are 

satisfied. Consequently, 0 is a unique common 

fixed point of A, B, S and T. 
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