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Abstract 

This paper explores the  existence of solutions for the conformable  integro differential equations of fractional 

order with infinite delay in Banach spaces by making use of Contraction mapping, the fixed point techniques 

Leray Schaudernonlinear alternative and Schafer fixed point theorem.  
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1.Introduction 

Liouville and Riemann revealed the fundamental representation of the fractional derivative at the end of the 

nineteenth century. The idea of a non-integer derivative and integral, as opposed to the conventional integer 

order differential and integral, was first introduced in 1695. In the same year, Leibniz was questioned by 

L'Hopital on a specific notation for the nth-derivative of the linear function f(x) = x, dn/(dxn) when n = 1/2. 

Study of L'Hopital's and Leibniz's fractional calculus was initially primarily restricted to the best 

mathematicians.Few mathematicians likeFourier, Euler, and Laplacehave experimented with fractional 

calculus and its mathematical ramifications.Their own notation and method was revealed for defining the 

concept of a fractional order integral or derivative. Two of the most well-known definitions in the area of 

fractional calculus are the Riemann-Liouville definition and the Grunwald-Letnikov definition. The 

mathematical theory necessary for studying fractional calculus was created at the turn of the 20th century. 

They offer a potent tool to link the memory of various substances and the environment of the heritage. A 

power law memory kernel of the nonlocal interactions can be used to produce generalised and non-integer 

order differential equations in time and space known as fractional order differential equations. Many physical 

phenomena, including nonlinear seismic oscillations, control systems, elasticity, electric drives, circuits 

systems, continuum mechanics, heat transport, quantum physics, fluid mechanics, and signal analysis, make 

use of FDE.For basics of fractional systems one can make reference to the books [3,9,15] and 

papers[1,2,7,8,13,14]  and the references cited therein. 
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In the study of qualitative as well as quantitative theory for functional differential equations, phase space is a 

fundamental idea. Hale and Kato introduced the seminormed space obeying appropriate axioms in chapter 

four [4]. (see also Benchorra et.al [17] and Y.Zhou et.al [18]). We advise the reader to read Hino et albook .'s 

[5] for a comprehensive discussion on this subject 

R.Khali.et.al [10] has introduced the conformable fractional differential operator and  the rapid development 

of conformable fractional differential equations has been made see [11,12,21,22,23],and the references 

therein. 

In this paper we  are concerned with the existence of mild solutions of CFID with infinite delay of the form 

u(𝕥)= 𝜓(𝕥) ; 𝕥𝜖 (-∞, 𝑎]                                                                     (1.1)-(1.2) 

𝑇𝑎+
𝑟 [u( 𝕥)-k(𝕥,s,us)]= g(𝕥, us ,∫ 𝐸(𝕥, 𝑠, 𝑢𝑠 

𝑡

𝑎
) ds 

where𝜓: (−∞, 𝑎]  → X   , k, g: J ×  B × B → X  are given continuous functions and B is called a phase space 

that will be specified later and J= [a,b] 

2.Preliminaries: 

The Banach space of all real continuous functions on X with the norm is C(J,X). 
‖𝑥‖∞ = 𝑠𝑢𝑝

𝑡𝜖𝐼
|𝑥(𝑡)| 

By L1(X) we denote the Banach space of measurable functions x:J→R with are Lebesgue  

integrable, equipped with the norm. 

‖𝑥‖𝐿1 = ∫ 𝑥(𝑡)𝑑𝑡
𝑇

0

 

For the purposes of this work, we assume that the Phase space (B, ‖. ‖B) is aseminormed linear space of 

functions mapping (−∞, a] into X, and that it satisfies the following fundamental axiomsintroduced by Hale 

and Kato [4] 

(A-1)If u :(−∞, a]→R, and  u0∈ B, then for every  𝕥∈ [0, a] the following conditions hold: 

(i) utis in B, 

(ii) ‖𝑢𝑡‖𝐵 ≤K(t) sup‖𝑢(𝑠)‖: 0 ≤s ≤t + P(𝕥)‖𝑢0‖𝐵 

(iii) ‖𝑢(𝕥)‖ ≤H‖𝑢𝑡‖B, 

where H > 0 is a constant, K : [0, b]→ [0,∞) is continuous, P: [-∞,a) → [-∞,a) is locally bounded andH,K,M 

are independent of u(·). 

(A-2) For the function u(·) in (A-1), 𝑢𝕥is a B-valued continuous function on [0, b]. 

(A-3) The space B is complete. 

Definition:2.1 

The conformable fractional derivative of order 0<r≤1 starting from a of the function x:J→R  

is defined by, 

Tr
a+ x(t)=

𝑢(𝑡+ℎ(𝑡−𝑎)1−𝑟)−𝑢(𝑡)

ℎ
 

Particularly, if u is differentiable, then  

Tr
a+ x(t) = (𝑡 − 𝑎)(1−𝑟)

𝑑

𝑑𝑡
𝑢(𝑡)   

Definition:2.2 (Conformable fractional integral) 

The conformable fractional integrals of order r> 0 of a function x:J→R is defined by, 

Ir
a+ x(t) =∫ (𝑠 − 𝑎)(𝑟−1)𝑥(𝑠)𝑑𝑠

𝑡

0
,    𝕥 𝜖 𝐽 

Example:2.1 

 For 0 <r ≤ 1  and 𝜆 ∈R, we have  

𝑇0
𝑟 𝜆 =0,  𝑇0

𝑟𝕥𝑟= 𝜆𝕥(𝜆−𝑟) 
𝑇0
𝑟𝑒𝜆𝕥 =𝜆𝕥1−𝑟𝑒𝜆𝕥  ,   𝕥 𝜖𝐽 

Lemma:2.1 

   Let 1≤  r>0,and u∈ C(J), then  Tr
a+ Ir

a+ x(𝕥)=x(𝕥).  Further, if x is differentiable on J, then  

Tr
a+ Ir

a+ x(𝕥)=x(𝕥)-x(a). 

Definition:2.3 
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A mapping ℱ:𝕏 → 𝕏 is said to be contraction if there exists a real number k, 0≤k<1, such 

that  ‖ℱ(𝑢) − ℱ(𝑣)‖ ≤k‖𝑢 − 𝑣‖ for all u,v∈  𝕏.  Note that ‖. ‖ indicates a norm in 𝕏. 

Definition: 2.4Banach fixed point theorem 

If 𝕏 is a Banach space and ℱ:𝕏 → 𝕏 is a Contraction mapping then F has a unique fixed point. 

Definition: 2.5Krasnoselskii’s fixed point theorem 

Let𝜒1,𝜒2 be two operators satisfying, 

a) 𝜒1is contraction and  

b) 𝜒2is completely continuous. 

Then either, 

i)The operator equation 𝜒1x+𝜒2x=x has a solution   or 

 ii)The set 𝜂 = {𝑢𝜖𝑥: 𝜇𝜒1 (
x

𝜆
) + 𝜇𝜒2 u = u} is bounded for 𝜇 ∈ (0,1). 

We will now present the idea of mild solution u 𝜖 B of (1.1)-(1.2).This equation is equivalent to 

the subsequent integral equation 

u(𝕥) =𝜓(𝕥) ; 𝕥𝜖 (-∞, 0] 

𝜓(𝑎)-k(a, ua ,a)+k(𝕥, 𝑢𝕥  , ∫ 𝐸((𝕥, 𝑠, 𝑢𝑠
𝑡

0
)ds)+∫ (𝑠 − 𝑎)𝛼−1

𝑡

𝑎
 g(t,𝑢𝑠,∫ 𝐸(𝕥, 𝑠, 𝑢𝑠

𝑡

0
)ds); 𝕥𝜖 [0, 𝑎] 

Let x(·) : (−∞, a]→R be the function defined by 

 

x(𝕥) =0, if 𝕥∈ [0, a], 

 

𝜓 (t), if 𝕥∈ (− ∞, 0]. 

Then x0 = 𝜓. For each  y𝜖C([0, a],X) with y(0) = 0, we denote by 𝑦̅the function defined by 

 

𝑦̅(𝕥) =y(𝕥), if t ∈ [0, a], 

0, if 𝕥∈ (−∞, 0] 

We can decompose u(·) as u(𝕥) = y(𝕥) + x(𝕥), 0 ≤  𝕥 ≤a, which implies = yt+ xt, for every 

 0 ≤ 𝕥 ≤a .Set C0={u∈ C([0,a],X): u0 = 0} and let  ‖. ‖𝑏be the seminorm in C0 defined 

 by‖𝑢‖𝑏 =‖𝑢0‖𝐵  + 𝑆𝑢𝑝{|𝑢(𝕥)| : 0 ≤ 𝕥 ≤a }=𝑆𝑢𝑝{|𝑢(𝕥)|: 0 ≤ 𝕥 ≤a } for u 𝜖 C0 

 

 3. Existence Results:  

The existence of solutions for the structure (1.1)–(1.2) under various fixed point theorems is presented and 

demonstrated in this section. 

Now we list the assumptions that come next. 

Hypothesis: 

H1)  k:J×B×B→X is continuous and we can find functions L1,L2 ∈ C[J,R+] in a way that, 
‖𝑘((𝕥, 𝜉, 𝑥) − 𝑘((𝕥, 𝜁, 𝑦‖≤L1‖𝜉 − 𝜁‖B+L2‖𝑥 − 𝑦‖B  and 
‖𝑘((𝕥, 𝜉, 𝑡)‖≤Lk||𝜉||𝐵 

H2)  g:J×B×B→X is continuous and we can find functions L3,L4  ∈ C[J,R+] in a way that, 

‖𝑔((𝕥, 𝜉, 𝑥) − 𝑔((𝕥, 𝜁, 𝑦‖≤𝐿3‖𝜉 − 𝜁‖B+𝐿4‖𝑥 − 𝑦‖B 

 H3)  E:J×B×B→is continuous and we can find functions LeT∈ C[J,R+] in a way that, 
‖𝐸((𝕥, 𝑠, 𝑥) − 𝐸(𝕥, 𝑠, 𝑦‖≤LeT‖𝑥 − 𝑦‖B 

 H4) The function Φ(t):J→ 𝑅+ is determined by,      

Φ((𝕥)= K[(L1+L2TLe)+(L3+L4TLe)]𝕥 ∈ J,0<Φ(𝕥)<1 

Theorem:3.1 

   Assume that the conditions (H1)-(H4) hold and u 𝜖 𝑋.Then the  problem(1.1)-(1.2) 

has a unique mild solution . 

The following estimates are based on the aforementioned hypothesis. 

||k((𝕥 ,𝑢𝕥 + 𝑥𝑡 , ∫ 𝐸(𝕥, 𝑠, 𝑢𝑠
𝑡

0
+ 𝑥𝑠 )𝑑𝑠)- k(t,𝑢𝕥   ̅̅ ̅̅ + 𝑥𝑡,∫ 𝐸(𝑡, 𝑠, 𝑢𝑠̅̅ ̅

𝑡

0
 + 𝑥𝑠)𝑑𝑠)||B 

                                          ≤L1||𝑢𝕥-𝑢𝕥̅||+L2||∫ 𝐸(𝕥, 𝑠,
𝑡

0
𝑢𝑠 + 𝑥𝑠)  -   𝐸(𝕥, 𝑠, 𝑢𝑠̅̅ ̅  + 𝑥𝑠)ds ||B 
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                                           ≤L1||ut- 𝑢𝑡̅̅ ̅̅ ||+L2TLe||𝑢𝕥-𝑢𝕥̅||B 

                                           ≤(L1+L2TLe )||𝑢𝕥-𝑢𝕥̅||B 

‖∫ (𝑠 − 𝑎)𝛼−1 [ 𝑔 (𝕥, 𝑢𝑠 + 𝑥𝑠, ∫ 𝐸(𝑠, 𝜏, 𝑢𝜏 + 𝑥𝜏)𝑑𝜏
𝑡

0
) − 𝑔 (𝕥, 𝑢𝑠̅̅ ̅ + 𝑥𝑠, ∫ 𝐸(𝑠, 𝜏, 𝑢𝜏̅̅ ̅ + 𝑥𝜏)𝑑𝜏

𝑡

0
)] 𝑑𝑠

𝑡

𝑎
‖≤ ∫ (𝑠 −

𝑡

𝑎

𝑎)𝛼−1 𝑑𝑠 ‖‖

[
 
 
  𝑔 (𝕥, 𝑢𝑠 + 𝑥𝑠, ∫ 𝐸(𝑠, 𝜏, 𝑢𝜏 + 𝑥𝜏)𝑑𝜏

𝑡

0
)

−𝑔 (𝕥, 𝑢𝑠̅̅ ̅ + 𝑥𝑠, ∫ 𝐸(𝑠, 𝜏, 𝑢𝜏̅̅ ̅  + 𝑥𝜏)𝑑𝜏
𝑡

0
)]
 
 
 

‖‖ 

≤∫ (𝑠 − 𝑎)𝛼−1
𝑡

𝑎
ds [L1 ||us - 𝑢𝑠̅̅ ̅̅ ||X+L2TLe )||𝑢𝜏-𝑢̅𝜏||B] 

≤∫ (𝑠 − 𝑎)𝛼−1
𝑡

𝑎
ds [(L1 +L2TLe )||𝑢𝜏-𝑢̅𝜏||B] 

 Therefore,||Ζ𝑢(𝕥) − Ζ𝑢(𝕥)̅̅ ̅̅ ̅̅ ||≤[(L1+L2TLe)+(M3+L4TLe)∫ (𝑠 − 𝑎)𝛼−1
𝑡

𝑎
 ds]||𝑢𝕥-  𝑢𝕥̅||B 

                           ≤ [(L1+L2TLe)+(M3+L4TLe)∫ (𝑠 − 𝑎)𝛼−1
𝑡

𝑎
 ds]K  𝑠𝑢𝑝

𝑠𝜖[0,𝑡]
‖𝑢(𝕥) − 𝑢(𝕥)̅̅ ̅̅ ̅̅ ‖

𝐵
 

  ≤Φ(t) ‖𝑢(𝕥) − 𝑢(𝕥)̅̅ ̅̅ ̅̅ ‖
𝐵

 

We can deduce that contains a single fixed point u, which is a mild solution of the model  

(1.1)-(1.2) on (−∞ 𝑎]from the presumption (H4) and from the perspective of the contraction mapping 

principle. 

We continue to examine the existence result for the models (1.1)-(1.2).using the Leray-Schauder nonlinear 

alternative fixed point theorem.  

Lemma 3.1[20,p.135].Let  ℂ  be a  Banach space ,  𝔼 a closed ,convex  subset  of  ℂ,𝔘 an open  

Subset of 𝔼 and 0 𝜖 𝔘. Suppose that ℱ: 𝔘̅ → 𝔼  is a continuous, compact ( that  is, ℱ (𝔘̅ ) is a  

relatively compact subset of ℂ) map. Then either  

i) ℱhas a fixed point in 𝔘̅ , or 

ii) there is a u 𝜖 𝜕𝔘 ( the boundary of 𝔘 in 𝔼) and 𝜆 𝜖(0,1) with u=𝜆 ℱ(𝑢). 
(H1*) The function k: J×B×B→X  is  completely  continuous  and  there  exists constants  

        Mk>0  and𝑀𝑘̂> 0 such that  ||k(𝕥,𝜑,𝜁)||𝑋  ≤Mk  (‖𝜑‖𝐵 + ‖𝜁‖𝐵)+𝑀𝑘̂  for all (𝕥, 𝜑, 𝜁)  is    

measurable 

(H2*) i)There exists a continuous increasing function 𝜑:[-∞, 𝑎) →[-∞, 𝑎) and a  continuous  

function   p1:X→[-∞, 𝑎)  such   that ‖𝑔(𝕥, 𝜁, 𝜁1‖𝐵 ≤ p1(𝕥) 𝜓(‖𝜁‖𝐵 + ‖𝜁1‖𝐵) for all  

          (𝕥, 𝜁, 𝜁1)𝜖J×B×B 

        ii) There exists a constant 𝒩> 0 such that  
𝒩

𝜉∗𝐶1
𝜇
 +
𝜉∗

𝜇

𝑡𝛼

𝛼
‖𝑝1‖∞𝜓(𝜉

∗‖𝑤1‖) ds   
>1 

where𝜇 =1- K Mk(1+LeT)  and C1=‖𝜓(𝑎)‖+KLk‖𝑢𝑎‖+𝑀𝑘̂ 

Theorem:3.2 

Suppose that the assumptions (H1) through (H4) and (H1*) through (H2*) are true. The model (1,1)-(1,2) 

thus has a singular mild solution on (-∞ , 𝑎] 
Proof:   

Now we develop the subsequent hypothesis  

(H5) g: J× 𝐵 × 𝐵 → X is continuous and there exists functions Lg such that  ||g(t,0,0)||≤Lg 

Transform the problem(1.1)-(1.2)into a fixed point problem.Let usrecognize the operator Ζ: 𝐵 → 𝐵 

characterized by, 

(Ζu)(𝕥)=

{
 

 
𝜓(𝕥)𝕥 ∈ (−∞, a]

𝜓(𝑎) − 𝑘(𝑎, 𝑢𝑎 , 𝑎) + 𝑘 (𝕥, 𝑢𝑡, ∫ 𝐸(𝕥, 𝑠, 𝑢𝑠)𝑑𝑠
𝑡

0
)

+∫ (𝑠 − 𝑎)𝛼−1𝑔(𝕥, 𝑢𝑠, ∫ 𝑒(𝑠, 𝜏, 𝑢𝜏)𝑑𝜏
𝑡

0
)𝑑𝑠

𝑡

𝑎
𝕥 ∈ (−∞, 𝑎]

 

To prove the operator Ζ̅  is completely continuous, we split the operator Ζ ̅: 𝐵 → 𝐵 . 
Presently for 𝕥 𝜖J we split Ζ̅ asΖ̅1 +Ζ̅2where, 
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(Ζ
1

̅̅ ̅̅̅)(𝕥) = 𝜓(𝑎) − 𝑘(𝑎, 𝑢𝑎 , 𝑎) + 𝑘 (𝕥, 𝑢𝑡 + 𝑥𝑡 , ∫ 𝐸(𝕥, 𝑠, 𝑢𝑠)𝑑𝑠
𝑡

0

) 

(Ζ
2

̅̅ ̅̅ ̅)(𝕥) = ∫ (𝑠 − 𝑎)𝛼−1𝑔(𝕥, 𝑢𝑠, ∫ 𝑒(𝑠, 𝜏, 𝑢𝜏)𝑑𝜏
𝑡

0

)𝑑𝑠
𝑡

𝑎

𝕥 ∈ (−∞, 𝑎] 

Step:1 

Ζ̅Br⊂Brfor some r>0. We assert the existence of a positive integer r such thatΖ̅Br⊂Br. If it is  

not true, then a function for each positive number r ,xr(.)∈Br. 

But Ζ(xr ) ∉Br.. 

‖(Ζ𝑥𝑟)(𝕥) ‖>r for some 𝕥 ∈ 𝐽, we sustain, 

r≤ || (Ζ𝑥𝑟(𝑡)|| 

≤ ||𝜓(𝑎)||+ ||𝑘(𝑎, 𝑢𝑎 ,a)|| + ||k(𝕥,𝑢𝑡,∫ 𝐸(𝕥, 𝑠, 𝑢𝑠)𝑑𝑠||
𝑡

0
 

  + ||∫ (𝑠 − 𝑎)𝛼−1𝑔(𝕥, 𝑢𝑠, ∫ 𝐸(𝑠, 𝜏, 𝑢𝜏)𝑑𝜏
𝑡

0
)𝑑𝑠

𝑡

𝑎
|| 

≤  I1 +I2 +I3 →  (3.1) 

I1 =||𝜓(𝑎)|| 
I2 =||𝑘(𝑎, 𝑢𝑎 ,a)|| 

≤Lk||ua|| 

≤ 𝐾Lk𝑟 

I3 =||k(𝕥,𝑢𝕥 ,∫ 𝐸(𝕥, 𝑠, 𝑢𝑠)𝑑𝑠||
𝑡

0
 

= ‖k(𝕥, 𝑢𝕥 + 𝑥𝑡 , ∫ 𝐸(𝕥, 𝑠, 𝑢𝑠 + 𝑥𝑠)𝑑𝑠 )  − 𝑘(𝕥, 0,0)
𝑡

0

‖ + ‖𝑘(𝕥, 0,0)‖ 

     ≤L1||𝑢𝕥 ||+L2||∫ 𝐸(𝑡, 𝑠, 𝑢𝑠 + 𝑥𝑠)𝑑𝑠||
𝑡

0
 

≤L1||𝑢𝕥 ||+L2Le T||𝑢𝕥 || 
≤ 𝐾(L1+L2Le T)r 

I4 =||∫ (𝑠 − 𝑎)𝛼−1𝑔(𝑡, 𝑢𝑠, ∫ 𝐸(𝑠, 𝜏, 𝑢𝜏)𝑑𝜏
𝑡

0
)𝑑𝑠

𝑡

𝑎
|| 

    ≤∫ (𝑠 − 𝑎)𝛼−1||𝑔(𝑡, 𝑢𝑠 + 𝑥𝑠, ∫ 𝐸(𝑠, 𝜏, 𝑢𝜏 + 𝑥𝜏)𝑑𝜏
𝑡

0
||𝑑𝑠

𝑡

𝑎
 

    ≤L1||𝑢𝑡|| +L2||∫ 𝐸(𝑡, 𝜏, 𝑢𝜏 + 𝑥𝜏)𝑑𝜏||
𝑡

0 ∫ (𝑠 − 𝑎)𝑟−1
𝑡

𝑎
 ds 

   ≤ 
𝑡𝛼

𝛼
K(L3+L4LeT)r 

Therefore (3.1)  becomes 

||(Ζ xr)(t)||≤ ||𝜓(𝑎)||+𝐾Lk𝑟+(L1+L2Le T)r+∫ (𝑠 − 𝑎)𝑟−1
𝑡

𝑎
 ds(L3+L4LeT)r 

≤ 𝑟 

Step:2 

To proveΖ1̅̅ ̅is a contraction. 

||Ζ1̅̅ ̅𝑢(𝑡) − Ζ1̅̅ ̅𝑢(𝑡)̅̅ ̅̅ ̅̅ || ≤  ||k(𝕥,𝑢𝕥 + 𝑥𝑡 , ∫ 𝐸(𝕥, 𝑠, 𝑢𝑠
𝑡

0
+ 𝑥𝑠 )𝑑𝑠)- k(𝕥,𝑢𝕥̅ + 𝑥𝑡,∫ 𝐸(𝕥, 𝑠, 𝑢𝑠̅̅ ̅

𝑡

0
+ 𝑥𝑠 )𝑑𝑠)||B 

                                    ≤ L1||𝑢𝕥-𝑢𝕥̅||+L2||∫ 𝐸(𝕥, 𝑠,
𝑡

0
𝑢𝑠 + 𝑥𝑠)  -  𝐸(𝕥, 𝑠, 𝑢𝑠̅̅ ̅ + 𝑥𝑠)ds ||B 

                                    ≤L1||𝑢𝕥-𝑢𝕥̅||+L2TLe||𝑢𝕥-𝑢𝕥̅||B 

                                    ≤(L1+L2TLe )||𝑢𝕥-  𝑢𝕥̅̅ ̅̅ ||B 

                                   ≤ Λ ||u(𝕥)–𝑢(𝕥)̅̅ ̅̅ ̅̅ ||B                          [Since K(L1+L2TLe  )= Λ ] 

Step:3 

We shall prove that 𝛧2̅̅ ̅ maps bounded sets into bounded sets. 

||𝛧2̅̅ ̅u (𝕥) ||≤ ||∫ (𝑠 − 𝑎)𝛼−1𝑔𝕥, 𝑢𝑠 + 𝑥𝑠, ∫ 𝐸(𝑠, 𝜏, 𝑢𝜏 + 𝑥𝜏)𝑑𝜏
𝑡

0
)𝑑𝑠

𝑡

𝑎
|| 

                ≤∫ (𝑠 − 𝑎)𝛼−1||𝑔(𝕥, 𝑢𝑠  + 𝑥𝑠, ∫ 𝐸(𝑠, 𝜏, 𝑢𝜏 + 𝑥𝜏)𝑑𝜏
𝑡

0
||𝑑𝑠

𝑡

𝑎
 

               ≤L3||𝑢𝑡|| +L4||∫ 𝐸(𝕥, 𝜏, 𝑢𝜏 + 𝑥𝜏)𝑑𝜏||
𝑡

0
∫ (𝑠 − 𝑎)𝑟−1
𝑡

𝑎
 ds 

               ≤∫ (𝑠 − 𝑎)𝛼−1
𝑡

𝑎
ds K(L3+L4LeT)r+Lg 
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             ≤ r 

To prove 𝛶2̅  is equicontinuous 

 Let 𝜀> 0 be small,0< 𝕥 1<𝕥 2≤ T. For any x 𝜖 𝐵𝑟 ={x 𝜖 B: ||x||≤ 𝑟}, and 𝕥 𝜖(−∞, 𝑎] 

||𝛧2̅̅ ̅𝑥(𝕥2  )  - 𝛧2̅̅ ̅𝑥(𝕥 1)  ||≤ ∫ ‖(t2 − 𝑎)
𝛼−1 𝑑𝑠 𝑔(𝕥, 𝑢𝑠 + 𝑥𝑠, ∫ 𝐸(𝑠, 𝜏, 𝑢𝜏 + 𝑥𝜏)𝑑𝜏

𝑠

0
)‖

𝑡2
0

 

                                       +∫ ‖(𝕥1 − 𝑎)
𝛼−1 𝑑𝑠 𝑔(𝕥, 𝑢𝑠 + 𝑥𝑠 , ∫ 𝐸(𝑠, 𝜏, 𝑢𝜏 + 𝑥𝜏)𝑑𝜏

𝑠

0
)‖

𝑡1
0

 

                                  ≤∫ ‖(𝕥2 − 𝑎)
𝛼−1 𝑑𝑠 𝑔(𝕥, 𝑢𝑠 + 𝑥𝑠, ∫ 𝐸(𝑠, 𝜏, 𝑢𝜏 + 𝑥𝜏)𝑑𝜏

𝑠

0
)‖

𝑡1
0

 

                               +∫ ||
𝑡2
𝑡1

(𝕥2 − 𝑎)
𝛼−1 𝑑𝑠 𝑔(𝕥, 𝑢𝑠 + 𝑥𝑠, ∫ 𝐸(𝑠, 𝜏, 𝑢𝜏 + 𝑥𝜏)𝑑𝜏

𝑠

0
)|| 

                                  -∫ ||
𝑡1
0

(𝕥1 − 𝑎)
𝛼−1 𝑑𝑠 𝑔(𝕥, 𝑢𝑠 + 𝑥𝑠, ∫ 𝐸(𝑠, 𝜏, 𝑢𝜏 + 𝑥𝜏)𝑑𝜏

𝑠

0
)|| 

                                 ≤∫ [(𝕥2 − 𝑎)
𝛼−1𝑡1

0
-(𝕥1 − 𝑎)

𝛼−1 ]ds|| 𝑔(𝕥, 𝑢𝑠 + 𝑥𝑠, ∫ 𝐸(𝑠, 𝜏, 𝑢𝜏 + 𝑥𝜏)𝑑𝜏
𝑠

0
)|| 

                                 +∫ (𝕥2 − 𝑎)
𝛼−1 𝑑𝑠||𝑔(𝕥, 𝑢𝑠 + 𝑥𝑠, ∫ 𝐸(𝑠, 𝜏, 𝑢𝜏 + 𝑥𝜏)𝑑𝜏

𝑠

0
)||

𝑡2
𝑡1

 

→   0 as 𝕥2 → 𝕥1. 

which intimates that 𝛧2̅̅ ̅ (.) is equicontinuous . Therefore by Arzela Ascoli theorem , we realize that the 

operator  𝛧2̅̅ ̅ is completely continuous. 

Step:4 

We demonstrate the existence of an open set𝔘 ⊂C(I,X) with u ∉  𝜆Ζ(u)  for 𝜇𝜖(0,1) and u 𝜖 𝜕𝔘. 

Let  𝜇𝜖(0,1) and  

u(𝕥)= 𝜆 {
𝜓(𝑎) − 𝑘(𝑎, 𝑢𝑎 , 𝑎) + 𝑘 (𝕥, 𝑢𝑡 , ∫ 𝐸(𝕥, 𝑠, 𝑢𝑠 + 𝑥𝑠)𝑑𝑠

𝑡

0
)

+∫ (𝑠 − 𝑎)𝛼−1𝑔(𝕥, 𝑢𝑠, ∫ 𝑒(𝑠, 𝜏, 𝑢𝜏 + 𝑥𝜏)𝑑𝜏
𝑡

0
)𝑑𝑠

𝑡

𝑎
)
}   , 𝕥𝜖 J. 

 

‖𝑢(𝕥)‖ ≤ ‖𝜓(𝑎)‖ +‖𝑘(𝑎, 𝑢𝑎 , 𝑎)‖+‖𝑘 (𝕥, 𝑢𝑡 + 𝑥𝑡 , ∫ 𝐸(𝕥, 𝑠, 𝑢𝑠 + 𝑥𝑠)𝑑𝑠
𝑡

0
)‖ 

                +‖∫ (𝑠 − 𝑎)𝛼−1𝑔(𝕥, 𝑢𝑠 + 𝑥𝑠, ∫ 𝑒(𝑠, 𝜏, 𝑢𝜏 + 𝑥𝜏)𝑑𝜏
𝑡

0
)𝑑𝑠

𝑡

𝑎
‖ 

 

 ≤ ‖𝜓(𝑎)‖+KLk‖𝑢𝑎‖+KMk(1+LeT) ‖𝑢(𝑠)‖+ 𝑀𝑘̂ +∫ (𝑠 − 𝑎)𝛼−1
𝑡

𝑎
  p1(𝕥)𝜓 {‖𝑢𝑠‖+LeT‖𝑢𝕥‖} 

 

‖𝑢((𝕥)‖ ≤
𝐶1

𝜇
 +

1

𝜇
∫ (𝑠 − 𝑎)𝛼−1
𝑡

𝑎
p1((𝕥) 𝜓(𝜉∗‖𝑢(𝑠)‖) ds     where 𝜉∗ =K(1+LeT) 

Then 𝜉∗‖𝑢(𝕥)‖ ≤
𝜉∗𝐶1

𝜇
 +
𝜉∗

𝜇
∫ (𝑠 − 𝑎)𝛼−1
𝑡

𝑎
p1(𝕥) 𝜓(𝜉∗‖𝑢(𝑠)‖) ds      

We contemplate the function specified by w1(𝕥)=sup{𝜉∗‖𝑢(𝑠)‖: 0≤s≤ 𝕥 }  , 𝕥 𝜖 J 

We have w(𝕥) ≤
𝜉∗𝐶1

𝜇
 +
𝜉∗

𝜇
∫ (𝑠 − 𝑎)𝛼−1
𝑡

𝑎
p1(𝕥) 𝜓(𝜉∗‖𝑤1(𝑠)‖) ds      

Then ‖𝑤1‖ ≤
𝜉∗𝐶1

𝜇
 +
𝜉∗

𝜇

𝑡𝛼

𝛼
‖𝑝1‖∞𝜓(𝜉

∗‖𝑤1(𝑠)‖ 

And consequently we have
‖𝑤1‖

𝜉∗𝐶1
𝜇
 +
𝜉∗

𝜇

𝑡𝛼

𝛼
‖𝑝1‖∞𝜓(𝜉

∗‖𝑤1‖) ds   
  ≤ 1 

Then by (H2*)(ii) , there exists 𝒩 such that ‖𝑤1‖ ≠  𝒩. We shall define  

   𝔘={u 𝜖 C(J,X):‖𝑢‖<𝒩} 

From the option of 𝔘, there is no u 𝜖 𝜕𝔘 u=𝜇 Ζ(u)  for some  𝜇 𝜖 (0,1). As a result of lemma 3.1, 

we infer that the operator  has a fixed point u which is a solution of the given problem  on (-∞,a]. 

Theorem 3.3 

 Let 𝕏 be a Banach space, and 𝔇:𝕏 → 𝕏  be a completely continuous operator. Then either  

  i) 𝔇has a fixed point or 

  ii) The set Ω = {x 𝜖𝔘 : x= 𝜇𝔇 (x) ,0< 𝜆 < 1 }  is unbounded. 

Theorem 3.4 

Assume that the hypotheses (H1)-(H4) and (H1*) is satisfied. Moreover, assume(H3*) 
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There exists functions p,q 𝜖 C(I,X) such that 
‖𝑔(𝕥, 𝜇, 𝜈)‖ ≤ p(𝕥)+q(𝕥) (‖𝜇‖𝐵+‖𝜈‖𝐵)    ,           𝕥𝜖 J, 𝜇, 𝜈 𝜖 B×B. 

Then the problem (1.1)-(1.2) has atleast one mild solution on (-∞,a] provided that 

 {1-K Mk(1 + LeT)-  𝐾 
𝕥𝛼

𝛼
‖𝑞‖∞𝜓(𝜉

∗)}<1 . 

Proof: 

The operator Ζ is defined as in theorem 3.1.As in theorem 3.2 we can prove that the operator 

Ζ is completely continuous.Now ,we prove that the set 

Ω = {u𝜖B : x= 𝜆 Ζ(u),0<  𝜇 < 1 } is bounded. 

Let u 𝜖Ω be any element.Then as in the theorem 3.2, we have each  𝕥𝜖 𝐽, 

‖𝑢(𝕥)‖ ≤ 𝐶1 +K Mk(1+LeT) ‖𝑢(𝑠)‖+∫ (𝑠 − 𝑎)𝛼−1
𝑡

𝑎
‖𝑝‖∞𝑑𝑠 

                  + ∫ (𝑠 − 𝑎)𝛼−1𝐾‖𝑞‖∞
𝑡

𝑎
𝜓(𝜉∗‖𝑢(𝑠)‖) ds 

where C1=‖𝜓(𝑎)‖+KLk‖𝑢𝑎‖+𝑀𝑘̂ and consequently we have 

‖𝑢‖𝑇 ≤ C1+
𝑇𝛼

𝛼
‖𝑝‖∞𝑑𝑠 {1 − 𝜇1

−1}   

where𝜇1 ={1-K Mk(1 + LeT)-  𝐾 
𝕥𝛼

𝛼
‖𝑞‖∞𝜓(𝜉

∗)}. 

The set is consequently bounded. Z must have at least one fixed point, according to Theorem 3.3. Since the 

operator must also have a fixed point, the mild solution of (1.1)- (1.2) 

Conclusion 

The existence results for conformable fractional integro differential equations (CFIDE) with infinite delay in 

Banach spaces have been investigated in this paper using the Banach contraction principle, the Leray-Shauder 

nonlinear alternative, and the Schafer fixed point theorem. The need to broaden the research to demonstrate 

more qualitative and quantitative characteristics including stability, controllability, and other attributes is 

critical given how significant the concept is in illuminating real-world happenings. 
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