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Abstract: 

This paper's goals center on understanding the physiological behavior of diabetes, specifically type 2 

diabetes, through mathematical modelling and in order to assess the health of diabetic patients and identify the most 

effective and practical blood glucose control strategies. Additionally, research on diabetes patients both those with and 

without complications is the main objective. Either a new model can be built or an existing model can be improved in 

order to develop a mathematical model for diabetes mellitus. 

Keyword: Typical roots approach, The Direct Method of Lyapunov, Diabetes. 

 

INTRODUCTION 

The process of turning a problem from a practical one into a mathematical one, creating the mathematical models 

required to solve the problem, and interpreting the solutions is known as mathematical modelling (Berry and Nyman, 

2002; Bukova-Guzel, 2011). It entails figuring out the mathematical puzzles, interpreting the answers in terms of the real 

world, validating the conclusions by contrasting them with the actual situation, and either improving the model or, if it is 

acceptable, applying the model to related situations for assessment and improvement. 

Another definition of mathematical modelling is the use of mathematics to examine significant issues related to 

the seen world, test hypotheses, and make predictions about it. There are only better models; there is no best model. It is 

employed in the fields of engineering, including computer science and artificial intelligence, as well as the natural 

sciences, including physics, biology, earth science, and meteorology, as well as the social sciences, including political 

science, economics, psychology, and sociology. A mathematical model can be used to analyse a system, explore the 

interactions between its parts, and anticipate behaviour. 

Dynamical systems, statistical models, differential equations, and game theoretic models are only a few examples 

of the many diverse types of mathematical models that exist. There are two sides to every field of knowledge: an 

analytical, mathematical, statistical, and computer-based one, and an empirical, experimental, and observational one. 

The first of these two aspects requires the use of mathematical modelling. 1988 in Kanpur. According to the 

mathematical methods used to solve them, the goal we have for the model, and their nature, mathematical models can be 

categorised as linear or non-linear, static or dynamic, deterministic or stochastic, discrete or continuous. Although linear, 

static, or deterministic models are simpler to handle and also produce reasonable approximations, non-linear, dynamic, 

and stochastic models are fundamentally more realistic. 

Diabetes and its symptoms 

Diabetes Mellitus, often known as diabetes or hyperglycemia, is a syndrome of disturbed metabolism that is 

typically brought on by a combination of inherited and environmental factors. The hormone insulin, which is produced 

in the beta cells of the pancreas, interacts intricately with other chemicals and hormones in the body to regulate blood 

sugar levels. Diabetes mellitus is a collective term for a number of illnesses that increase blood sugar levels by impairing 

either insulin secretion or action in the body. This phrase is used to describe a condition marked by persistently elevated 

blood plasma glucose levels and other abnormalities in lipid and carbohydrate metabolisms, which are frequently linked 

to the emergence of particular microvascular and macrovascular conditions. 

Diabetes of type 2 develops when the body becomes resistant to the effects of insulin. Adult-onset or non-insulin-

dependent diabetes mellitus are two names for it (NIDDM). When the liver, muscles, and other tissues stop responding 
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to insulin, type 2 diabetes develops. The pancreas makes an effort to make up for this by manufacturing more insulin, 

but for some people, this effort falls short. If the high blood sugar is left untreated, the beta cells eventually die or 

degenerate, which causes the pancreas to stop generating insulin. The most prevalent kind of diabetes, type 2, is linked 

to lifestyle factors like junk food, obesity, and inactivity as well as heredity. The recent increases in the prevalence of 

type 2 diabetes may be attributable to environmental exposures. 

 

Diagnosis of Type 2 Diabetes 

The most popular methods for identifying diabetes include 

1) The hemoglobin A1c test, commonly known as the glycohemoglobin test 

2) The fasting plasma glucose test (FPG) 

Oral glucose tolerance evaluation (OGTT) 

 

At routine medical checkups, a different blood test called the random plasma glucose (RPG) test is occasionally 

used to identify diabetes. If the RPG is 200 micrograms per deciliter or more and the patient additionally exhibits signs 

of diabetes, a medical professional may make the diagnosis of diabetes (World Health Organization, 2013). The blood 

test levels for diagnosing diabetes in people who are not pregnant as well as prediabetes are shown in the following 

table. (ML = deciliter; mg = milligrams). 

 

 

 

 

 

 

 

Table 1.1 – Diabetes blood test levels 

 

There are numerous approaches to diagnose diabetes mellitus, but the glucose tolerance test (GTT), an approach that is 

universally recognised, is always chosen. To determine if it is IDDM or NIDDM, more tests must be performed when 

diabetes mellitus is found. The amount of fasting blood sugar immediately reveals the extent of carbohydrate 

intolerance. Thus, depending on this classification, the severity of the condition can be determined, as shown in the table 

below: 

 

SEVERITY RANGE OF FASTING BLOOD SUGAR 

Normal  60-100mg/dl 

Mildly diabetic  60-105 mg/dl 

Moderately diabetic  106-200 mg/dl 

Severely diabetic  Above 200 mg/dl 

Table 1.2 – Diabetes severity 

 

The atypical oral glucose tolerance curve of moderate diabetes is similar to those seen in many non-diabetic 

Condition A1c (percent) Fasting plasma 

glucose 

(mg/dl) 

Oral Glucose Tolerance 

Test (mg/dl) 

Normal About 5 99 or below 139 or below 

Pre-diabetic 5.66 to 6.355 100 to 125 140 to 199 

Diabetic 6.5 or above 126 or above 200 or above 
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diseases, as seen in the above table. Because of this, understanding the patient's metabolic profile is necessary in 

order to properly evaluate a particular tolerance curve. It is necessary to establish the following details before 

analysing the blood for glucose levels: 

 1) The name of the actual technique utilised 

 2) Whether it accurately measures sugar 

 3) Whether whole blood, plasma, or serum will be used; and 

 4) The normal person's fasting glucose levels when any of these blood sample types are used. 

  

 METHODOLOGY 

The formulation of mathematical models for the dynamics of glucose-insulin leaves out less important factors. The 

relative impact of system components on its dynamics is used to assess the relevance of the various components. After 

the mathematical issues are solved, interpretation is carried out by comparing the model's constituent parts and 

behaviour to those parts, traits, and behaviours of actual systems. The models are then verified using data from several 

sources as well as arbitrary parameter values. The dynamics of the disease can be explained using the models, and 

predictions regarding its rate of growth or decline can be made. 

The two main methods used in our work for stability analysis are: 

 

1. The typical roots approach: The eigenvalues of the variational matrix, a Jacobian matrix of first order derivatives 

of interaction-functions, determine a system's asymptotic stability. This method only examines the local stability of the 

system near its equilibrium state because the Jacobian is determined by Taylor expansion of the interaction-functions 

and neglects higher order terms. When examining the local stability of large-scale systems in homogeneous 

environments, the Gershgorin's theorem and the Routh-Hurwitz criterion (Lancaster and Tismanetsky, 1985) are both 

highly helpful. Only slight alterations of the initial state are stable under this technique. Thus, it is referred to as local 

stability. 

2. The Direct Method of Lyapunov: The initial state and system dynamics are frequently subjected to significant 

disturbances in real systems. The direct Lyapunov method is the most effective analytical technique for analysing 

stability to finite perturbations of an ecosystem model's initial state (La Salle and Lefschetz, 1961; Rao, 1981). The 

creation of specific functions known as Lyapunov functions is necessary for this technique. The Lyapunov direct method 

generalises the idea that a system is stable if it dissipates energy continuously until it reaches equilibrium. 

MODELLING THE SYSTEM THAT CONTROLS BLOOD SUGAR 

Insulin and glucagon, two pancreatic hormones, are the two key players in the glucose control system. Together, 

glucagon and insulin regulate metabolism. When blood sugar (glucose) levels drop too low, the pancreas produces the 

hormone glucagon. The liver produces glucose when exposed to glucagon, which is then released into the bloodstream. 

Blood glucose levels are increased by glucagon, and fuel utilisation is organised by insulin for either storage or 

oxidation. Increased blood glucose levels trigger the production of insulin, which then acts on cells all over the body to 

promote glucose absorption, storage, and use. 

The broad paradigm for how insulin and glucose interact that we suggest is as follows: 

𝑥˙ = −p1𝑥 − p2𝑥𝑦 + p3 

 

                   𝑦˙ = q1𝑥 − q2𝑦………… (1.1) 

 

Where 𝑥 ≥ 0, 𝑦 ≥ 0 

 

𝑥 represents glucose concentration 

𝑦 represents insulin concentration 

p1 is the rate constant which represents insulin-independent glucose disappearance 

p2 is the rate constant which represents insulin-dependent glucose disappearance 

p3 is the glucose infusion rate 

q1 is the rate constant which represents insulin production due to glucose stimulation 
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q2 is the rate constant which represents insulin degradation 

 

 THE MODEL IS LINEARIZED 

Consider the significant point of the coordination (1.1) 

 

𝑥˙ = 0 ⇒ −p1𝑥 − p2𝑥𝑦 + p3 = 0 = M(𝑥, 𝑦) 

 

𝑦˙ = 0 ⇒ q1𝑥 − q2𝑦 = 0 = N(𝑥, 𝑦) .… (1.2) The only equilibrium 

points are (0,0) and (𝑥*, 𝑦*). 

Solving (1.2), we get 

 

 

𝑥* = 
−p1q2 + √(p1q2)2 + 4p2q2p3q1 

2q1p2 

 

 𝑦* 

=  
−p1q2 + √(p1q2)2 + 4p2q2p3q1 ……………………( 1. 3 

) 

2q2p2 

 

We are interested in the interior-equilibrium point (𝑥*, 𝑦*) which always exist since all the parameters are 

considered positive. 

 

Stability Analysis 

 

Theorem 3.1:The trivial equilibrium point (0,0) is asymptotically stable locally. 

Proof:  

At (0,0) 










−

−
=

21

1

)0,0(

0

qq

p
K  

Whose characteristic equation is given by E2 + (p1 + q2)E + p1q2 = 0 

 

Where 𝑇𝑟k(0,0) =−(p1 + q2)< 0 and 𝑑𝑒𝑡𝐽(0,0) = p1q2 > 0, since p1 > 0, q2 > 0 

As a result, the trivial critical point (0,0) is locally aymptotically stable according to Routh-Hurwitz 

criteria. 

 

Theorem 3.2:If the interior-equilibrium point (x*, y*) is asymptotically stable locally, 

(q1 − p2𝑥*)2 < 4q2(p1 + p2𝑦*) 

 

Proof: Consider the Lyapunov function 

 

𝑉 = 1 (X2 + 𝑌2) 

2 

Hence, 𝑉˙ = −(p1 + p2𝑦*)X2 + (q1 − p2𝑥*)X𝑌 − q2𝑌2 

     𝑉˙ = -1/2 AX2 +BXY – ½ CY2 

Where 𝐴 =2(p1 + p2𝑦*) 
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ð 

𝑑𝑡 

𝐵 = q1 − p2𝑥* 

𝐶 = 2q2 

That is a sufficient condition for 𝑉˙ to be negative definite. 

𝐵2 < 𝐴𝐶 

i.e. (q1 − p2𝑥*)2 < 4q2(p1 + p2𝑦*) 

 

Which is the requirement that the parameters satisfy in order for the critical point (x*, y*) to be locally 

asymptotically stable. 

Lemma 3.1: The set fi = {(𝑥, 𝑦): 0 ≤ 𝑥 + 𝑦 ≤ p3 + 𝑐𝑒−ð𝑡, H = 𝑚i 𝑛(p1 − q1, q2) , 

c is a constant that attracts all solutions that begin in the positive quadrant. 
Proof:  

From our model (1.1), we have 

 321 pxypxp
dt

dx
+−−=  

 

        And yqxq
dt

dx
21 −=  

 

Therefore, 𝑑
(𝑥+𝑦) 

= −p1𝑥 − p2𝑥𝑦 + p3 + q1𝑥 − q2𝑦 

 

≤ −p1𝑥 + p3 + q1𝑥 − q2𝑦 

= −(p1 − q1)𝑥 + p3 − q2𝑦} 

≤ − min{(p1 − q1), q2} (𝑥 + 𝑦) + p3 

Let H = min{(p1 − q1), q2} 

 

Then 𝑑
(𝑥+𝑦) 

≤ −H(𝑥 + 𝑦) + p 

𝑑𝑡 

Or 
𝑑(𝑥+𝑦) 

ð(𝑥+𝑦)−p3 

 

≤ −𝑑𝑡 

Or   1/ ð log{H(𝑥 + 𝑦) − p3} ≤ −𝑡 + 𝑙𝑜𝑔r1 

 

Or 𝑥 + 𝑦 ≤ p3 / ð + r𝑒−ð𝑡, where r/ ð = r1 

 

 

Theorem 3.3: If (x*, y*) is an interior-equilibrium point, it is globally asymptotically stable. 

q1 − p2𝑥*)2 < 4q2(p1 + p2𝑦) . 

Proof: Consider the Lyapunov function𝑉 = 1 (𝑥 − 𝑥*)2 + 1 (𝑦 − 𝑦*)2 

2 2 

 

Then 𝑉˙ = (𝑥 − 𝑥*)𝑥˙ + (𝑦 − 𝑦*)𝑦˙ 

= (𝑥 − 𝑥*)(−p1𝑥 − p2𝑥𝑦 + p3 + p1𝑥* + p2𝑥*𝑦* − p3 + p2𝑥*𝑦 − p2𝑥*𝑦) 

3 
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+(𝑦 − 𝑦*)(q1𝑥 − q2𝑦 − q1𝑥* − q2𝑦*) 

= (𝑥 − 𝑥*){−p1(𝑥 − 𝑥*) − p2𝑦(𝑥 − 𝑥*) − p2𝑥*(𝑦 − 𝑦*)} 

+(𝑦 − 𝑦*){q1(𝑥 − 𝑥*) + q2(𝑦 − 𝑦*)} 

= (−p1 − p2𝑦)(𝑥 − 𝑥*)2 + (−p2𝑥* + q1)(𝑥 − 𝑥*)(𝑦 − 𝑦*) − q2(𝑦 − 𝑦*)2 

 

= − 1 P11(𝑥 − 𝑥*)2 + P12(𝑥 − 𝑥*)(𝑦 − 𝑦*) − 1 P22(𝑦 − 𝑦*)2 

2 2 

 

Where P11 =2(p1 + p2𝑦) 

P12 = −p2𝑥* + q1 

P22 = 2q2 

The condition for 𝑉˙ to be negative definite is that 

P12

2 
< P11P22 

i.e., (q1 − p2𝑥*)2 < 4q2(p1 + p2𝑦)  

      If the interior-equilibrium point (x*, y*) is globally asymptotically stable, 

(q1 − p2𝑥*)2 < 4q2(p1 + p2𝑦) where yϵΩ. 

 

Theorem 3.4: The non-trivial significant point (𝐶*, 𝑁*) is locally asymptotically stable if 

 

I < 2F + E + H + G and E(F + H) > (I − F)𝜃 

 

Proof: Consider the Jacobian K at (𝐶*, 𝑁*) connected with m and n of the IVP ,  

which is provided by 

 










−+−

+−
=

FIGI
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This matrix's characteristic equation is given by 

X2 − 𝑡𝑟𝑎𝑐𝑒(K)X + det (K) = 0 

 

If the eigenvalues are negative or have negative real parts, the eigenvalues are negative. 

 

𝑡𝑟𝑎𝑐𝑒(K) < 0 and det(K) > 0 

 

And, according to the Routh-Hurwitz stability criterion, if the above conditions are met, the system will be 

locally asymptotically stable. 

As a result, if our system of differential equations is locally asymptotically stable, 

 

−E − 𝜃 − I + F < 0 and −(E + 𝜃)(I − F) + E(I + H) > 0 

 

i.e. if I < 2F + E + H + G and E(F + H) > (I − F)𝜃 

   

The Non-linear System 

We now assume that E, the probability of a diabetic patient developing complications, is proportional to W(t) 

and N(t) and has the following form: 
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E = E(𝑡) = 𝛽 W(𝑡), ..................... (1.4) 

L(𝑡)  
 

Where 𝛽 is a real positive constant. 

 

The IVP is now a non-linear system that can be written as 

𝐶˙(𝑡) ε ƒ(𝐶, 𝑁) = (𝛽 − 𝜃)𝐶(𝑡) − 𝛽 𝐶(𝑡)
2 

, 𝑡 > 0, 𝐶(0) = 𝐶 

L(𝑡)   

 

L˙ (𝑡) ε N(W, L) = (I − F)L(𝑡)  − (I + H)𝐶(𝑡),𝑡 > 0, L(0) = L0 ............................... (1.5) 

For simplicity sake, we write W(𝑡) = W and L(𝑡)  = L. Hence, we may write 

 

W˙(𝑡) ε M(W, 𝑁) = (𝛽 − 𝜃)W –𝛽/N W
2 

, 𝑡 > 0, W(0) = W 

  

 

L˙ (𝑡)  ε N(W, L) = (I − F)L − (I + H)W,𝑡 > 0, L(0) = L0 ................................. (1.6) 

Taking W˙(𝑡) ε M(W, L) = 0 and L˙ (𝑡) ε N(W, L) = 0, we get a non-trivial critical point 
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Note that W ˙(𝑡) ε  M(W, L) = 0 ⇒ (𝛽 − 𝜃)W* − 𝛽/N* W
*2 

= 0 

W*/L* =( 𝛽 – 𝜃)/ 𝛽  

Now W* > 0, L* > 0, 𝛽 > 0, therefore 𝛽 − 𝜃 > 0. 

 

Numerical simulation 

We consider arbitrary values for the parameters as follows:  

I = 0.004, F = 0.000004, E = 0.05, H = 0.0009, G = 0.004, 

 

𝜃 = F + H + G = 0.0049, 𝛽 = 0.006, 

 

The condition for local stability is satisfied as 

 

I = 0.004 < 2F + E + H + G = 0.0549 

 

And E(F + H) =  0.0000452 > 𝜃(I − F) = 0.0000196 

For validate the global constancy condition, we consider the case as 𝑡 → 0 that is for 

W + l ≤ w, i.e. W ≤ w and L ≤ w. We again consider the scrupulous case when         w = 

5000. Let L = 5800 and W = 0.00006. We see that the condition for global constancy is also 

satisfied  as 
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Where w1 = 3 and w2 = −0.35. 

 

Consider equation  

  

𝑑𝐷(𝑡) 
= 𝐷˙ (𝑡) = I 𝐷(𝑡) − (E + F)𝐷(𝑡) + G𝐶(𝑡) 

𝑑𝑡 
 

𝑑𝐶(𝑡) = 𝐶˙(𝑡) = E𝐷(𝑡) − 𝜃𝐶(𝑡)𝑑𝑡 
 

We generate a graph for the equation using the initial values D(0)=3, C(0)=3, and the 

same parameter values but varying I. 

When I = 0.004, the number of diabetics without complications drops to 1.35 

(approximately) and the number of diabetics with complications rises to 2.755. (approximately). 

When I = 0.00004, we get the same result. However, when I = 0.0004, we see that both D(t) and 

W(t) grow exponentially, with D(t) growing faster than W(t) (t). When we increase I to I = 4.0, we 

see that D(t) and W(t) grow more quickly. This finding suggests that as the population of diabetics 

without complications grows at a constant positive rate, the population of diabetics with 

complications grows significantly as well. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                        

 

Fig 1 
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Fig 2 

 

 

 

 

 

 

Fig 3 

This finding is consistent with the real-world situation, demonstrating that our model is valid and in 

accordance with the real-world situation. 
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               CONCLUSION 

In this paper, we develop a mathematical model of the diabetic population and divide it into two 

groups: diabetics without complications and diabetics with complications. The Routh-Hurwitz Criterion and the 

Lyapunov function are used to establish local and global stability conditions. Numerical simulations are used to 

validate these conditions. Graphs are generated for the mathematical model, which shows that as the rate of 

diabetes increases, so does the number of diabetics with complications, and if this increase is at a positive integral 

rate, the population of diabetics with complications grows exponentially. Diabetes is sweeping the world as a 

global epidemic, and diabetes-related deaths are increasing at an alarming rate. Controllable factors that cause 

diabetes, such as unhealthy eating habits, obesity, and inactive lifestyles, should be prioritised, and the importance 

of raising awareness about the negative impact of such factors cannot be overstated. More research is needed to 

reduce the cost and burden of this disease. 
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