
BioGecko                                           Vol 12 Issue 02 2023  

   ISSN NO: 2230-5807 

 

300 

                    A Journal for New Zealand Herpetology 

 

BRAIN TUMOR SEGMENTATION AND GRADING FROM MRI IMAGES 

USING DEEP NEURAL ARCHITECTURES 
 

Para Rajesh1,Dr. A.Punitha2,P.Chandra Sekhar Reddy3 

 
1Research Scholar, Department of Computer Science and Engg, Faculty of Engineering and Technology, 

Annamalai University, Chidambaram, Annamalai Nagar – 608002, Tamil Nadu, India. 

pprr21@gmail.com 

 
2Department of Computer Science and Engg,, Faculty of Engineering and Technology, Annamalai 

University, Chidambaram, Annamalai Nagar – 608002, Tamil Nadu, India. 

12charuka17@gmail.com 

 
3Computer Science and Engg. Dept., Gokaraju Rangaraju Institute of Engineering and Technology, 

Hyderabad-500090, Telangana, India. 

pchandureddy@yahoo.com 

 

 

 

ABSTRACT 

Brain tumor segmentation is the process of distinguishing the tumor region from the normal brain tissue 

region; in conventional diagnosis process this segmentation or localization shall aid for prognosis and plan 

treatment or surgical process. In reality the uneven structure and hazy limits of tumors causes greater 

challenges and issues. Also the segmentation can be considered as the process of localization of tumor 

present in the MRI images. Ascancerous region vary in size and position, accurate and efficient 

segmentation of tumors remains a difficult undertaking. They frequently have complicated, non-rigid shapes 

with a variety of appearance qualities. Additionally, the tumors exhibit significant variations in appearance 

from patient to patient, as a result there is a need to add physical information about the tumor to enhance the 

accuracy of the segmentation process.The segmentation process becomes more complex when the tumor 

region overlap with normal brain tissues, particularly in tumor borders.The efficient deep neural 

architectures are employed in this study. This work shall focus on the design and development of a deep 

neural network based segmentation usingLinkNET, and U-NET (with EfficientNet based encoder), fully 

convolutional neural network. This localization task shall help the physician to decide on the further 

prognosis and treatment process. Further by analyzing the segmented tumor region, tumor categorization can 

be done by using a classification model.  

 

Keywords: deep neural architecture, U-NET,EfficientNet brain tumor, MRI images, segmentation, grading, 

classification model, tumor categorization. 

 

1. INTRODUCTION 

A group of aberrant cells that proliferate uncontrollably in the brain are what make up a brain tumor. There 

are many different forms of brain tumors that can be categorized into two groups: benign and malignant. 

Benign tumors are often easier to remove surgically than malignancies because they are less belligerent, 

develop more gradually, and persistsecluded from the neighboring normal brain tissues. It might be 

challenging to distinguish malignant brain tumors from the nearby normal tissues. As a result, it might be 

challenging to completely remove them without causing harm to the surrounding brain regions. Malignant 

brain tumors have been affecting more people over the past few decades. According to the International 
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Association of Cancer Registries, brain tumors cause about 24,000 deaths each year (IARC). According to a 

research, the market for brain tumor treatment is anticipated to develop at a growth rate of 1.11 percent 

annually until 2030. If the predictions come true, brain tumors may overtake leukemia as the second most 

frequent malignancy by 2030, according to medical experts. According to estimates, 40,000–50,000 persons 

in India receive a brain tumor diagnosis each year. Children make up roughly 20% of these. 

Magnetic Resonance provides images with high resolution and excellent contrast across tissues, MRI is a 

noninvasive medical imaging technique that is frequently utilized in daily clinical practice. For a more 

precise prognosis and providing healthcare service, MRI offers abundant information regarding the structure, 

volume, and position of tumors [1, 2]. As a result, MRI images are mostly used in studies on the medical 

prognosis and brain tumors localization. Weighted images, often known as MRI slices, include T1-weighted, 

T2-weighted, proton-density weighted, and fluid-attenuated inversion recovery (FLAIR). T1-weighted 

contrast stretched images and FLAIR are frequently utilized for brain tumor analysis since it makes 

cancerous region hyperintense. T1-weighted images provide a better visualizationof cancerous and healthy 

tissuesby exploiting the high contrast between grey and white matter [3]. 

It is essential and difficult to accurately segment brain tumors using MRI images for prognosis and treatment 

planning. The process of finding one or more sub-regions defining the region of interest is known as image 

segmentation and is a current focus of research in the area of biomedical imaging. A variety of algorithms, 

such as threshold-based approaches [4, 5], region-based methods [6, 7], deformable methods [8, 9], 

classification methods [10, 11], and deep learning [12, 13], were proposed in the literature to detect tumors 

in the human brain. Brain cancers are frequently detected, and brain tumor segmentation involves separating 

the malignant zone from healthy brain regions. However, since tumors can differ in size and position, 

accurate and efficient segmentation of tumors continues to be a difficult process. They frequently have 

complicated, non-rigid shapes with a variety of appearance qualities. Additionally, they exhibit significant 

patient-to-patient variability in appearances [14]. They also exhibit intensities overlapping with normal brain 

tissues, particularly in the borders of the tumors[44][45]. 

This work shall focus on segmentation of the tumor region by using a fully convolutional neural network 

modelLinkNET. The majority of the currently used methods for deep learning based localization of tumors 

use an encoder-decoder pair as the foundation of the network design, which were inspired by auto-encoders 

[3], [15]. The segmentation process begins with the encoder encoding data into feature space, which the 

decoder then projects into spatial categorization. The pooling indices or complete convolution are typically 

used to recover spatial information that was erodedbecause of the pooling/ convolution operation during the 

encoding process. By using the fully convolutional neural architectures the model the segmentation accuracy 

is increased along with a significant reduction in processing time by diverting spatial information and going 

straight from the encoding block to the associated decoding block. In this approach, information that would 

have been lost at each encoder level is saved, saving time and resources that would have been used to re-

learn the lost knowledge. 

2. LITERATURE SURVEY 

A most difficult task in the process of analysis of medical images is brain tumor segmentation. To accurately 

delineate the regions of brain tumors is the focus of cancer analysis. Deep learning techniques have recently 

demonstrated better results in resolving a number of issues in the field of machine vision, including semantic 

segmentation, object detection, and image categorization. Many deep learning-based techniques were used to 

segment brain tumors with encouraging success. The strategies for segmenting brain tumors using deep 

learning that have recently been developed are covered in detail in this section. 

Both the prognosis and treatment of Gliomas, a most commonly occurring type of brain tumor that arises 

from glial cells, actively involve image segmentation. For instance, a precise glioma segmentation mask may 

aid in the planning of the operation, postoperative surveillance, and the improvement of the survival rate [16, 

17]. The task of brain tumordetection/segmentation can be described as follows in order to measure the 
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result of image segmentation: The model attempts to segment the cancerous region from the healthy tissues 

given an input image from one or more imaging modalities, for example, several MRI sequences, by 

categorizing each pixel present in the raw image into a category oftumor. The segmentation map of the 

related input is then returned by the system. Data imbalance has long been a problem in bio-medical image 

processing. Researchers experiment with a variety of strategies to effectively address the imbalance problem, 

including an ensemble techniqueor cascaded network [18], multiple learning tasks [18], and tailored error 

functions [20]. Making the most of multi-information modalities is another option. Recent studies mainly 

addressed modality fusion [21] and modality missing [22]. 

There are several unresolved problems in the detection of brain tumors through MR image analysis. When 

creating efficient segmentation models, two principles should be kept in mind. Through the extension of the 

receptive field [23], attention layer [24], fusion of featuremaps [25], and other forms, one is to extract higher 

semantics and locate the object of interest. The alternative is to improve the training and inference while 

reducing the number of network parameters, which will save computational time and resources [26]. The 

migration from a single channel network to a multi-channel network, from a network with densely connected 

layers to a fully-convolutional layers, and from a simple network to a deep cascaded network are the key 

ways in which the design of the network architecture is reflected. The goal is to further the network's depth, 

improve the network's capacity for feature learning, and achieve more accurate segmentation [41].  

Many techniques for accurately segmenting brain tumors based on creating efficient models of neural 

networks, stabilized training, and learning informative, discriminative characteristics. Early attempts at 

design stacked convolutional blocks to gradually improve network depth, imitating well-known networks 

like AlexNet [27]. Convolutional layers made up of many blocks with a kernel size usually larger than 5 

were layered in early research works like [28, 29], pooling and activation functions together. It is possible to 

extractcoarse to fine details with more number of learnable parameters to be taught by combining blocks 

with a convolution kernel of larger size. Other research projects, like [30], adopted the strategy used by VGG 

[31] to construct convolutional layers using a small-sized kernel (usually three) as the fundamental building 

block. Additional studies followed stacking of hybrid blocks [32] having different size of kernels, where 

kernels of larger sizeare capable of finding global features such as position and volume with a large 

receptive field and kernels of smaller size typically extract local features such as boundary and textural 

pattern with a small receptive field [38][40]. 

Gradient vanishing and explosion problems were resolved as the network becoming deeper by increasing the 

number of stacked layers. Early brain tumor segmentation algorithms like [33] and [34] adopted ResNet [35] 

and added residual connection into module design for stabilizing model training and achieve better 

segmentation. The problem of gradient explosion and vanishing can be solved by passing the input of the 

convolution block to its output through a residual connection. This prevents degradation and converges more 

quickly and accurately. The current standard procedure for designing models and intricate network structures 

employs a residual connection. The authors of the works listed below [36] enlarged residual connection to 

dense connection in accordance with DenseNet [37]. Even while a dense connection design appears to be 

more suitable for gradient back-propagation, the intricate close connection topology may need several 

memory operations while the network is being trained.The segmentation of tumor region in the MRI using 

various deep learning techniques is a difficult task. Due to deep learning's strong feature learning 

capabilities, automated brain tumor segmentation has various advantages [42]This work shall implement the 

two deep segmentation model;LinkNET(U-NET with EfficientNet based encoder) and compare their 

performance[43].  

3. MATERIALS AND METHOD 

3.1 Dataset  

Benchmark dataset, BR35H, containing brain tumor MRIs is used for training the segmentation model which 

contains a total of 804 MRI images (train-501; validation-202; and test-101). The dataset were used to train 
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the U-NET model. Images of different category of tumors (benign, malignant, and pituitary) are available in 

the dataset. 

3.2 Pre-Processing 

The quality of the scanned photographs was extremely variable because they were obtained using various 

scanners and acquisition conditions. The goal of our work was to improve the image quality of the low-

quality MRI by normalizing the histogram of the low-quality MRI to the histogram of the high-quality MRI. 

As a result, it is essential to evaluate the photographs' quality first. For the purpose of evaluating MRI 

quality, numerous strategies have been put forth [38]. In order to evaluate the quality of the image, we will 

utilize a histogram as our intensity normalization method tries to normalize histograms. The noise estimation 

index 𝜎̂𝑛 can be expressed mathematically as; 

𝜎̂𝑛  = mode{M(x)} 

Where mode{M(x)} represents the mode of the distribution. The generated index allows for a direct 

evaluation of MRI quality. A lower estimation index value denotes a higher level of image quality. 

▪ Normalization using Histogram 

Let𝑰(𝒙)represents the MRI of human brain where 𝑥 ∈ [0, 𝑁] × [0, 𝑀] × [0, 𝐿] ⊂ ℕ3 where 𝑁, 𝑀, 𝐿 is the 

dimensions of I, and B denotes the binary mask of the tumor image (𝐵 ⊂ 𝐼). This paper employs kernel 

density estimation technique for normalization which estimate the probability density function of the 

intensities of 𝐼 over the brain mask 𝐵. The KDE of the probability density function is estimated as follows; 

𝒑̂(𝒙) =  
𝟏

𝑵. 𝑴. 𝑳. 𝜹
∑ 𝑲(

𝒙 − 𝒙𝒊

𝜹
)

𝑵.𝑴.𝑳

𝒊=𝟏

 

where𝑥 is a pixel intensity value, 𝐾 is the kernel function non-negative which integrates to 1, and 𝛿 is a 

smoothing parameter used for scaling the kernel function. A gaussian kernel is used and the 𝛿 parameter is 

set to a value of 80. With the use of a combinatorial optimization method, we can more reliably select the 

mode related to the White Matter using the kernel density estimate's smooth form of the histogram. The 

entire image is then normalized using the discovered White Matter peak p. The result of the normalization is 

presented in Fig. 1 

𝐼𝑘𝑑𝑒(𝑥) =  
𝑐. 𝐼(𝑥)

𝑝
 

Where 𝑐 ∈ ℝ>0is a constant and the value of𝑐is set to 1 in the experiments. 



BioGecko                                           Vol 12 Issue 02 2023  

   ISSN NO: 2230-5807 

 

304 

                    A Journal for New Zealand Herpetology 

 

 
Fig. 1 Result of Histogram Equalization 

3.3 Architecture ofU-NET with EfficientNet Encoder 

UNet is a fully convolutional neural network with a symmetric U shape that was initially created for 

biomedical picture segmentation. The encoder-decoder module typically comprises of a CNN-based encoder 

that extracts the features from the original image. To capture fine details in the image, it down-samples the 

image gradually and lowers the feature map resolution. To produce the final feature map, these CNN 

architectures often gradually decrease the input resolution of the image. Reconstructing the segmentation 

map of the original image's size from the smaller feature map is difficult. In order to retrieve spatial 

information, the decoder module consists of a number of layers that up-sample the feature map of the 

encoder. In a traditional UNet, the expansion path and the contraction path are almost symmetrical. In 

contrast to the traditional set of convolution layers, it is suggested using EfficientNet as an encoder in the 

contracting path. The decoder module resembles the first-generation UNET (presented in Fig. 3).  

 
Fig. 2 Architecture of EfficientNet 

Figure 2 shows the encoder's block architecture in detail. EfficientNet is a cutting-edge model scaling 

technique that uses a straightforward but incredibly powerful compound coefficient to scale up CNNs in a 

more organized way. This architecture evenly scales every dimension with a specific set of scaling 

coefficients, in contrast to conventional techniques that arbitrary scale network dimensions like width, depth, 

and resolution. The baseline network is crucial to the success of model scaling. Therefore, a new baseline 

network is created by performing a neural architecture search using the AutoML MNAS framework, which 

maximizes both accuracy and efficiency, to further increase performance (FLOPS). Similar to MobileNetV2 

and MnasNet, this architecture utilizes mobile inverted bottleneck convolution (MBConv), however it is a 

little bigger because of a bigger FLOP budget.The last logit of the encoder's feature map must first be 
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bilinearlyupsampled by a factor of two before being concatenated with the feature map from the encoder 

with the same spatial resolution. 3x3 convolution layers are added after that, and then another upsampling by 

a factor of two follows. The procedure is repeated until the segmentation map is recreated with a size equal 

to the input image. Unlike the original UNet, the suggested architecture is asymmetrical. In this case, the 

expansion path is shallower than the contraction path. The method performs better overall as anefficient 

CNN encoder, such EfficientNet, is used. 

 

Fig. 3 Schematic view of connections in Encoder-Decoder blocks of U-NET [39] 

3.4 Architecture of LinkNET 

In the LinkNET architecture, a novel connection has been added between the encoder and decoder block to 

achieve precise instance level prediction without slowing down the network's processing time. The pooling 

indices or complete convolution are typically used to recover spatial information that was lost in the encoder 

due to pooling or strided convolution. By using this architecture, the information that would have been lost 

at each level of encoding is maintained, saving time and resources that would have been used to re-learn the 

lost knowledge. The architecture of the LinkNET model is presented in Fig. 4. Conv in this context refers to 

a convolution, and full-conv to a full convolution. Furthermore, strided convolution is used to accomplish /2 

denotes down-sampling by a factor of 2, and 2 denotes up-sampling by a factor of 2. Between each 

convolutional layer and ReLU non-linearity, we employ batch normalization. The encoder is located in the 

left part of the network, and the decoder is located on the right. Beginning with the first block, the encoder 

performs convolution on the input picture using a kernel of size 77 and a stride of 2. Additionally, this block 

conducts spatial max-pooling in a 3 by 3 area with a 2 stride. The remaining blocks that make up the later 

part of the encoder are referred to as encoder-blocks. 

The uniqueness of the architecture is seen in the connections between each encoder and decoder. Significant 

spatial information is lost as a consequence of the encoder's successive downsampling procedures. It is 

challenging to restore this lost data using only the encoder's output that has been downscaled. The input of 

each encoder layer is also passed to the output of its matching decoder in this research based on [15]. The 

goal is to retrieve lost spatial data that the decoder and its upsampling processes can employ. Additionally, 

the decoder can use fewer parameters because it is sharing the information that the encoder learned at each 

layer. When compared to the current state-of-the-art segmentation networks, this leads to an overall more 

efficient network and, consequently, real-time operation. 
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Fig.4LinkNET Architecture [15] 

3.5 Performance Metrics 

The Intersection-Over-Union (IoU) metric also known as Jaccard Index, is a commonly applied metrics in 

pixel-wise segmentation. The IoU is estimated by finding the ratio between the area of union between the 

generated mask by the model and the ground truth by the overlapped-region between the predicted and 

ground truth mask. The value of IoU metric can range between 0 and 1, with 0 representing complete 

overlap and 1 representingzero overlap. The Dice Coefficient is estimated by finding the ratio between the 

number of pixels in both by the area of overlap multiplied by two. The Jaccard Index and the Dices’ 

coefficient are quite similar. They are linearly related, thus if one metric proves a model A is superior to 

model B at segmentation, the other metric will also reflect the same.IoU can be expressed mathematically as; 

𝐽(𝐴, 𝐵) =  
|𝐴∩𝐵|

|𝐴∪𝐵|
=  

|𝐴∩𝐵|

|𝐴|+|𝐵|−|𝐴∩𝐵|
 where 𝐴 and 𝐵 denotes the segmented mask and the ground truth mask. 

Similarly the Dice’s Coefficient also known as F1 score can be expressed mathematically as 
2|𝐴∩𝐵|

|𝐴|+|𝐵|
. 

4. RESULTS AND ANALYSIS 

The segmentation models were trained on images of size 300×300 (original images of size 630x630 were 

resized to 300x300), with a batch size of 16 and for 200 epochs. To analyze the performance of the different 

fully convolutional neural architectures the U-NET, U-NET+EfficientNET, and LinkNET architectures were 

considered. The encoder used in U-NET+EfficientNETwas initialized with pre-trained weights of 

EfficientNetB7 trained on ImageNetdataset. Image augmentation techniques were adopted to prevent the 

model from overfitting. Pre-processed images were augmented and the models were configured with ADAM 

optimizer and learning rate of 0.001 during the training process.  

The loss function is based on the sum of IoU and binary cross-entropy. The performance of the models are 

evaluated based on the mean Intersection over Union (mIoU). IoUvaluesare computed as follows; 𝐼𝑜𝑈 =

 
𝑇𝑃

𝑇𝑃+𝐹𝑃+𝐹𝑁
.The LinkNET architecture is less difficult than competing architectures like U-NET with 

EfficientNET encoder because ResNet-50 has a limited number of layers with a smaller number of trainable 

parameters. In order to extract useful multi-scale features with fewer parameters and a higher number of 

layers, the encoder leverages residual connections between the layers. 

Table 1. Segmentation Results of LinkNET model on test images 

Raw Image Ground Truth 

Mask 

Segmented Mask 
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Fig.5 Loss value and IoU Graph of U-Net with EfficientNet-B7 

 

Fig. 5 presents the loss value and JI score recorded during the training process of segmentation models and 

the prediction of tumor mask for few test cases by the trained LinkNET model was were presented in Table 

1. The LinkNET model showed better performance when compared to U-NET based segmentation models 

where the Dice’s coefficient of the LinkNET model was 0.9876 with an accuracy of 98.04%.  

Table 2. Performance analysis of segmentation models 

Model 
Loss 

Function 

Dice’s 

Coefficient 

Jaccard 

Index 
Accuracy Precision Recall Specificity 

LinkNET with 

ResNET50 

Encoder 

0.009236 0.9876 0.7392 0.9892 0.9804 0.9824 0.9923 

U-NET+EffNetB7 0.009632 0.9815 0.7328 0.9854 0.9794 0.9798 0.9896 

U-NET 0.010018 0.9626 0.7264 0.9618 0.9645 0.9638 0.9818 

 

 

CONCLUSION 

The complexity of MRI brain imaging may make it difficult to segment brain tumors, but its goals to predict 

malignancies by using artificial intelligence models make this work important. The recommended system 

uses Link-Net and U-NET with a number of pre-trained models as an encoder architecture to extract 

discriminating features between the brain normal tissue region and the tumor/ cancerous region for automatic 

localization/ segmentation of brain tumors. They make the imaging and segmentation of brain tumors easier 

and faster. Performance-wise, the ResNet encoder-based LinkNET design showed better performance when 

compared to U-NET based architectures. The LinkNET model achieved an accuracy of 0.9892 with a Dice’s 
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coefficient of 0.9876 and precision of 0.9804. The limitations of the 2D segmentation algorithm prevent it 

from fully utilizing MRI data; as a result, the architecture loses semantics and local properties between 

slices. In order to increase segmentation accuracy, the work could be broadened in the future by creating 

more potent patch extraction methods. However, this study can be expanded to include the development of 

models to be trained on 3D images in order to uncover efficient ways to extract 3D slices. So far, we have 

only introduced the usage of 2D slices of MRI for extraction and training. 
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